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-INTRODUCTION — T

At the 1979 Annual Meeting of the National Council of Teachers of

‘Mathematics, the Council's Research Advisory Committee and the Special

Interest Group for Research in Mathematics Education (affiliated with.
the American Educational Research Association) co-sponsored a research

_presession. Three internationally renowned mathematics education

 researchers were invited to present addresses:

e Heinrich Rauersfeld, Institut fur Diﬂaktik der Mathematik (IDM),
-University of Bielefeld, Federal Republic of Germany

@ Efraim Fischbein, Tei‘AGiv University, Israel

e Hans Freudenthal,'now retired but until recently ﬁirector of IOWO
. (Instituut Ontwikkeling Wiskunde  Onderwijs), Utrecht, Netherlands

The three addresses all focus on the learning process, but from very
different points of view. Professor Bauersfeld, using examples from
American studies, provides a thoughtful analysis of the miscommunication
inherent In many teacher~-student interactions. Four deficient areas of
research in the teaching-learning process, fundamental problems of
rqSearch and development, and implications for teacher training are dis-
cussed. - -

Professor Fischbein directs attention to the role of intuition in
learning, providing numerous illustrations and a rationale for the
importance of intuition as students cope with mathematics. The concept
of intuitions, some of its characteristics, a classification schema, and
the nature of intuitions are described.

~ Finally, Professor Freudenthal traces the growth of number and
geometry ideas in one child. Situations and the child's reactions are
presented, with interpretations and additional comments.

A fourth paper, by Richard Lesh, is also included in this document.
He expounds on the role of research and thesneed for cooperation between

practitioners and researchers. Four problem areas needing research are
identified.

Significant ideas for researchers -- and teachers -- are provided

in eac;{document. Careful study of their details should be made by

those pflanning research and by those teaching, for there are points in
each paper which need further exploration.and development.

We are pleased to make these papers available so that a wider
audience can read them and, we hope, gain new perspectives and ideas.

]

Marilyn N. Suydam
ERIC/SMEAC




SUPPORTING RESEARCH IN MATHEMATICS EDUCALION

Richard Lesh
Northwestern University

A

In the July 1978 issue of the Journal for Research in Mathematics
Education, John Egsgard, then president of the National Council of
Teachers of Mathematics, published an editorial titled, "How Can Research
in Mathematics Education Become More Effective?" The editorjal was brief,
offered no positive suggestions to answer its own questions, and concluded
with the statement:

Until the mathematics education research community can come up -
*with results that will affect the classroom teacher...Il do not
believe that the Council would be justified i providing addi-
tional resources for research. (p. 241) -

The "Catch 22" irony in the above article would be comical and easily
rejected as nonsense--except that its conclusions resulted from negative,
naive,.and myopic attitudes about educational research which are signifi-
cant only because they are popular among influential mathematics educators.
Nonethcless, it is feolish to conclude that what we don't know won't hurt
us. Teachers and other mathematics educators are justifiably critical
about the quality of research in their fields. But to eriticize the
results .of past research, or to criticize the way current research is
done, is not the same as criticizing, opposing, or arguing not to support
efforts aimed at generating knowledge and information pertaining to prior-
ity problems in mathematics education. The latter type of criticism can
only minimize the chances that matrhematics educators will ever find -
adequate solutions to their most important problems.

/
’

What Is Research in Mathematics Education?

The 7oal of research is to develop a body of u-eful knowledge related
to important issues in mathematics education. The word ''research" often
conjures up images of data gathering and data analysis, activities that
are too narrow to cope with the more important task of knowledge develop-
ment. Useful knowledge development involves: (a) identifying important
problems in mathematics education, (b) formulating agendas of well-
defined (and answerable) questions which build upon one anothei and
which contribute to some existing body of knowledge dealing with the
underlying problems, (c) identifying answers that are useful in a variety
of contexts--weeding out information that is of questionable validity or
usefulness, and (d) communicating the results and conclusions in a way
that is meaningful to teachers, researchers, and other mathematics edu-
cators.

All of the above research functions are worthy of support by profes-
sional organizations like NCTM. It is not acceptable for professional
organizations to withhold support for knowledge development until: (a)
researchers express their results in a form that is meaningful and useful
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to teachers, or (b) teachers express their problems in a form that is. A
meaningful and accessible to researchers. . ‘ ;
’

The fact that professional organizations have neglected their
roles in knowledge development is one of the primary reascns why so
many important practitioner problems have been neglected i, research.
It is also why so much potentially.useful information has been neglected
by practitioners.

Among the most important shortcomings of mathematics education
research are: (a) many of the most important practitioner problems
have been neglected, or (b) for problems which have not been ignored,
an overwhelming amount of information may be available from a variety
of research perspectives, but still very little may be known (because
the various areas use different language to express their results, con-
ceive problems’in different ways, and, in general, do not articulate.
well with one another). Information overload is often a more serious
barrier to knowledge development than information scarcity. Lack of
cumulativeness has been one of the most obvious negative attributes of
existing research in mathematics education.

We should attack the above problems--mot attack research. Profes-
sional organizations should play importan’ ‘oles (a) to’ clarify problems
that are important to practitioners and to describe them so that they -
are accessible and meaningful to researchers from a variety of fi.lds,
and (b) to criticize, select, organize, reconceptualize, and synthtagize
information from a variety of research areas, and put them in a fiim
that is accessible and useful to practitioners. For example, the uwajor
curriculum development projects of the past decade produced a wealth-of
useful information and materials which today is nearly inaccessible to
teachers. One important goal for research ought to be to identify some
of the most important barriers to the diffusion and utilization of inno-
vative materials and useful information. Reinventing the wheel has been
a major pastime for mathematics educators--and a major waste of time for
both teachers and researchers. “

Both o¢f the above roles presuppose cloee working relationships among
researchers and practitioners--and an information flow that goes in both
directions, not just from researchers to teachers as Egsgard's editorial
suggests. Information from practitioners is needed--not only to identify
priority problems through needs assessments, status studies, and opinion
polls (CBMS/NACOME, 1975+ Suydam & Osborne, 1977; Weiss. 1978), but -
also to shape the direction of research through ethnographic or natural~
istic observation studies designed to clarify what teachers and other
mathematics educators really do, really care about, or really _hink.

Many people believe that, in mathematics education, the best practice
of the best practitioners is still better than the best theories of the
best theorists. Therefore, for greatest effectiveness, ftathematics
education research should distill as much information as possible from
this "practitioners’' wisdom'"~--following a pattern set centuries earlier
in physics, chemistry, and other well-esstablished areas of scientific
inquiry.
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Too often the dialogue between researchers and practitioners is .
imagined as being restricted to one-way researcher-to-practitioner monologues:
a professor (who is typically assumed to be a psychologist-type who has little
experience in a classroom) lectures teachers about psychological "do's" and
"don'ts" based on the results of single isolated studies. ,Thiq,conception
iz naive for a variety of reasoms. First, the practitioner's side of the
dialogue includes parents, administrators, textbook writers, legislators,
school board members, and other people who participate in the mathematics
education enterprise and whose activities and decisions influence classroom
instruction. Second, the researcher's side of the dialogue includes mathema-
ticians, representatives from a variety of different areas of scientific’
inquiry (e.g., psychology, sociology, anthropology, linguistics) as well as
many other educational specialists (e.g., measurement /evaluation/testing
specialists). Third, the communication system is cyclic, with the information
from practitioners to researchers being equally as important as that from
regearchers to practitioners--especially in the planning or formative scages
of knowledge development projects. Fourth, because of the complexity of
most of the important problems in mathematics education, it is unrealistic
to expect that they be resolved by single isolated studies. 1In fact, it is
unrealistic to expect most individual studies to have immediate and wide-
ranging implications for classroom practice. However, it is reasonable to
expect individual research studies to “feed into a theory or body of knowledge
which will'have implications within some reasonable length of time (e.g.
5-1Q years). 1If progress is ever to be made on the issues important to
mathematics educators, most issues will require long-term intensive commit-
ments and coordinated research efforts from groups of researchers, representing
a variety of practical and' theoretical perspectives, building upon one
another's work over extended periods of time.

For practitioners who are involved in the mathematics education enter-
prise--whether they are parents, teachers, adminisfrators, legislators, or

.others--a great deal of information:is available which is seldom used. For
example, a recent status study (Suydam & Osborne, 1977), funded by the :
National Science Foundation, concluded that:

1. Educational policy is frequently determined without collecting
enough information to allow the process to be rational.

2. Educational policy is frequently comstructed without using
information that is readily available.

3. Policy formulation typically has ignored existing practices in
the schools except as mirrored in the disquietude of society.
Information has been collected after-the-fact of policy decision
to confirm the actions taken. '

Similar statements could be made about other potential practitioner-
consumers of research information and materials--including teachers. For
example, research or teacher decision making has investigated how teachers'
"implicit theories" influence the following kinds of issueg: What cues

&
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do teachers consider and disregard as they make classroom decisions? Why
‘are some cues more salient to teachers than others? How do teachers weigh
and manipulate the cues they consider? What effects do teachers' judg-
ments have on their teaching styles, on classroom behaviors, or on student
learning (Morine, 1976; Peterson, Marx & Clark, 1978; Shavelson, 19735
Shavelson, Caldwell & Izu, 1977; Taylor, 1970; Zahorik, 1975)? These
studies consistently found that teachers' thoughts during instruction
attended primarily to their own behavior, the unpredictable parts of
lessons, and needed adjustments in. lessons that were going poorly.
Teachers made only slight modifications in their plans during inmstruction,
modified only those lessons that were going poorly, and used student
involvement cues to determine whether lessons were going poorly. It has
also been found that one of the best ways'to improve teacher decision-
making, in terms of both the quantity and the quality of the information
teachers use, is to improve their "implicit theories.,"

The useful results of research need not always result in a set of
pedagogical "do's" and "dont's." 1In fact, teachers may be the ones best
equipped to make these decisions, provided they are given accurate infor-
mation and useful ways to think about their activities.

Some mathematics educators who claim to be geod teachers insist that
research has had little influence on their teaching. Such claims usually
represent a naive conception of the varieties of products resulting from
research. Ever, time a teacher teaches and every time a set of instruc-
tional materials is developed, the teacher or authors operate on some
basic assumptions (perhaps unarticulated) about teaching and learning.
There is little doubt that educators, parents, teachers, government offi~
cials, and others throughout the world see reality differently and talk
about it differently as a result of the work done by several outstanding
researchers. Freud, Dewey, Thorndike, Skinner, Piaget, and Mead are but
a few notable examples of individuals whose research has obviously left
its mark on both thought and practice in education. However, these
influences did not result from isolated studies, Rather, they were the
products of theory development which organized, synthesized, and inter-
preted the results of many studies which were conducted over many years.

]

Professional organizations have powerful resources which could be
used to encourage knowledge development and the formation of research
communities to address priority problems in their areas. Through their
national and regional meetings, publication outlets, professional reward
structures, and a variety of potentially prestigious standing committees
and ad hoc committees and projects, professional organizations should
contribute to the identification of long-range research agendas to
address priority problems. They should help recruit first-rate
researchers and practitioners to work together cooperatively on issues
of common concern; they should promote the formation of communities of
research/practitioners; they should facilitate communication among
different types of individuals within these groups; they should help
overcome the fragmentation and lack of cumulativeness which has charac-
terized past. knowledge-development efforts; and in other ways they should
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help focus, coordinéte, and facilitate the development bf useful know-
ledge dealing with important problems in mathematics education.

Too often, ‘professional organizations have played exactly the
opposite kinds of roles. They have alienated "outside" resources; they
have defined teacher problems in ways that are short<sighted, and naive;
and they have helped to popularize superficial and simplistic "solutions."
- Egsgard's article, "Problems of Teachers of Mathematics and Some Solu-
tions" (1978b), is a convenient example of these latter characteristics
Egsgard's "problems" and "solutions" are riddled with references to nice~
sounding but naive constructs like "the experienced teacher'--as though
teachers could be classified into just two categories, experienced and
inexperienced; and as though a teacher who has taught college-bound 1llth
and 12th graders in Canada is equivalent to a teacher who has taught
remedial math to 7th and 8th graders in inner-city Chicago, or to a
kindergarten teacher in rural Indiana. Egsgard naively assumes that "good"
teachers automatically make good teacher trainers (presumably, by the same
line of reasoning, good football players automaticaliy make good coaches).
He assumes that a teacher who is good at lecturing to college-bound high.
school students will be equally good in primary school classes. He also
assumes. that only one of the following types of individuals and expertise
are important|, in teacher training: (a) people who know a great deal abrut
the mathematics content which 1s to be taught, (b) people who know a great
deal about the psychologic 'l capabilities and charactéristics of students
and/or teachers at a part. i1lar grade level, (c) people who have a great
deal of experflence teaching at a particular grade level or with a partic-
ular type of student (e.g., gifted, learning disabled, remedial, etc.),
(d) people who know about how the mathematics instruction in a particular
class fits into the overall curiyiculum, (e) people who Know about the effi-
cient and effective use of instructjional resources (e.g., textbooks,
computers, tests, etc.).

No single individual is likely to have all of the above knowledge and
experience. Yet, all of these perspectives (and more) should have mean-
ingful input into the solutions of important problems that face mathe-
matics teachers, No single type of individual--teacher, psychologist,
mathematician, textbock editor, test developer--should be excluded from
the dialogue; rather, professional organizations should create mechanisms
to evaluate critically the validity and usefulness of claims made by all
these individuals,

It is commendable that some individuals lobby strenuously for the
views of particular constituencies within professional organizations, but
such efforts should not degenerate into attempts to silence other consti-
tuencies or to prejudge the usefulness of their inputs,

The mathematics education enterprise includes a variety of different
types of players with different experiences and expertise, and if the
system is to function properly, each contributor should focuson those toles
that he or she does best. The kinds of skills, abilities, and experiences




Lesh

that are needed to teach a kindergarten class are quite different from those
required to write a geometry book based on recent Soviet "teaching studies"
research, or from the research skills required to '"follow the mathematical
thinking" of gifted 7th graders during non- ~routine problem solving attempts.
if-teachers and researchers are to fulfill their own roles properly, they
.-cannot be expected also to provide for all of the many other functions that
are needed in the mathematics education enterprise.

It is important to build a community of mathematics educators who will
work together to generate knowledge and information about important problems
in mathematics education. Professional organizations, like NCTM and AERA,
have critically important roles to play in the formation of this community.

Problems in Mathematics Education

What are some characteristics of emerging problems in mathematics?
The problems that confront mathematics teachers today are similar to those
that confro t the societvy at large. Thevy must accommodate an increasingly
complex enterprise that has a-multiplicity of tasks, ranging from socializa-
tion to inc:Easing test scores, despite declining resources. Educators need
to reverse values once associated with continuous growth and redirect
attention toward finding more efficient and less costly solutions to prob-
lems. Unfortunately, the kinds of "solutions'" provided by past research has
too often required overworked teachers to work harder, and bankrupt school
systems to become more expensive. X

The world of the late 1970's is quite different from the 1950's and
- 1960's when massive amounts of money were allocated to the development .of
new curriculum materials and to the training of more and better teachers.
In the late 1950's there were apparent mathematics personnel shortages,
school enrollments were increasing rapidly at all levels, and textbooks
were badly ouﬁ\of date. Today, many of these trends have been reversed.

During that past decade some of the most powerful influences on mathema-
tics education have been demographic (d=clining enrollment), economic
(dwindling resources), political (equity issues), legal (required special
education offerings), and technological (television, calculators, computers).
"~ The "baby boom'" that flooded our schools in the 1960's has evolved into a
middle-aged society in which adult education, continuing education, remedial
education, non-school education, and preschool education have become
increasingly more important.: New student populations have emerged (e.g.,
adults) who have new educational demands (e.g., mathematics for career
opportunities), and new educational institutions have emerged to meet these
needs. For example, two-yeer colleges, community colleges, and a variety
of non~certification adult education programs have more than doubled in the
past decade. According to the 1976 Databook for the National Institute
of Education. '

Education is Loday the major occupation of 62.2 million people
in the United States. That figure, along with the fact that more

T U Y Yy UL U
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than $96 billion will be spent by educational institutions this

year, lends credence to ‘the contention that education is now the
Nation's largest enterprise. (p. 5)

Unfortunately, our schools have been 8106420 adapt to the above “greying
of Americd phenomena with its new student populations and new educational
demands. Consequently, schools are a declining industry at the same time
that education is a booming enterprise.

l/'

The above trends have important implications for mathemati-~s education
research: e.g:, mathematics education is not restricted to schools, students
are not restricted to children, and instruction is not restricted to teaching.
This is not to say that mathematics educators should abandon their trsditional
concerns with the teaching of youngsters in schools. But, it does mean that
mathematics teaching exists within a larger educational system, that it is
strcngly influenced by non-school factors, and that solution7 to problems
which do not in some way take these factors into account are. likely to be
simp{istic-—and ultimately not helpful . :

According to a recent series of NSF-funded needs asseséménts and status
studies (Helgeson, Stake & Weids, 1978; Stake & Easley, 197$; Suydam
& Osborne, 1977; Weiss, 1978); some of the most important difficulties
confronting mathematics teachers are related to the following trends:

1. Declining enrollments have resulted in teacher job insecurity
and a slowing down of teacher turnover. Few new teachers have
been hired; the average age of faculties is increasing, and many
teachers opt to teach out of their area in order to maintain
employment . : '

On the other hand, mathematics teacher shortages have developed

~ in many parts of 'the country, and talented college students (who
might have gone into teaching ten years ago) are no longer getting
teaching certification. Once they have lost their teaching jobs
and have found other employment, many.of the most talented teachers
choose not to go back into teaching. So, the reserve pool of
talented teachers is often i11§§nry.

One important role fornyesearch is to furnich accurate and meaningful
information to desc¢ribe current circumstances and future trends
in education.

2. Pressure for accountability has increased narkedly within the past
ten years. Therefore, the goals selected for instvuction are
often the ones that ‘are easiest to document. Standardized tests
have assumed increasing importance in spite of the recognition
that scores from tests are being misused.

A second role for research is to construct and validate useful
measurement and evaluation instruments.,
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3. #chocl finangial preblems have produced *arger clasaes, more
courges per teachar, luwe, salaries, fewor fringe benefiys,
fewer para-professignal esgistants, diminished ingervice oppor-
tundfies, and relatively ineffective teacher suppirt systems,
Schoul ‘overhead (hest; wpkeep, supplies) costs more now than
previously. The result 4s an evapoﬂ%hion of discretionary funds
and fewer replacements of texts and atjeipment ., Curriculum

.  development efforts during the past 20 years have proaduced a
' . number of useful and {nnovative mateviale that are today quite
inaucees&ble to moﬁr teachers._
b
A thitd role for reaearch is to inveatigate barriers to the
development, disgeaination, and utilization of effective and
efficient 1nqtructiona1 materials,

4., &qual opportunity concerns (for women, mino:ities, the handf~ _
capped) are related to definitions of basic skills, Mathematics
has served as a significant barrier for career opportunities,
Increased emphagis on equul ~ducational opportunity has also

- regulted in more heterogeneous classrooms and pressures to treat
all students in the same way., Teachers are faced with conflict-
ing pressures to individualize instruction on the one band, while
treating all students alike on the other., In these circumstances,
basic skills wmay be geared to the lowest common denominator of
ability levels, . :

A fourth role for research is to identify the skills and abilities
needed by a variety of Jdifferent student populations—-and to fnveg-
vigate effective ways of meeting these ﬂ?hdh.

Many other problem areas could be identified for mathematics education
research-~vanging from careful descriptions of children's primitive. concep-
tiong of partfcular mathematical ideas (e.g., rational numbers, measurement
concephs) 1o éxperiments involving rodvhorwtxaining programs ovr teacher
decie fon making,  However, from the problem areas and trends that have
been piven already, 1+ s ¢lear that: :

L. Perhos, the onge s*normﬁ and fundamontal vhallpngo now facing
matherat{es oo v ion résearch is that of achieving better
upderstang ing @ﬁ hﬁphlv complex phenomena that invelve a large
apsber of {nteracting components (f.¢., systems of "organized
complexity’™) in which the extent and soverity of problems arve
of tew unbnown, diffuse, and shifting, Becpuse of Interdepen
doncies 1o the edudation gvsten, 1f 1o Lacceasioply diffieult
o tind solutdors Lo ene problem that do not aggrevate or creats
a new problén.  People whe should P2 onecaraged te address prob..
bems dn mathemarics education should fnelude more than poveho
logiats or those who call themsgelves mathematicys edaeation
riwﬁqvvharn it adae should foclude ccopsmisgtn, fnfapmat {op
gr¥ e mEnal fon apee i }i:;ﬁ; GE, R
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Users pf mathenatics education research: 1nfarmatian should
-if the inturests of mathematics teachers are to be serveds-

T includa el only teachevs but also administrators, parents,

- school board menbers, laglslators, ete.

2. Bocause of the interdependencies characterizing problems &g

* mathematics education and because of the rapid rates of change,
problems need to be anticipated rather thar discovered. How-
ever, the task of foreseeing problems and predicting policy out-

.. comes is immensely more difficult than the task of reacting to
events and adjusting policies by trial and errcr. Many problems
that can be foreseen have so far shown only a small part of them-

- selves. Popular attenr:sn and governmental concern tend to focus
on these curvent manifestations of problems--even thongu/they are
often little more than precursive symptoms—-with the rosult that
actions Intended as remedial are often halfway measures. 1t is
this~~the response to symptoms--that gives the impression of
moving from crisis to crisis, each more unexpected than the last.

Conclusion

Throughout this paper the factors that have been emphasized are those

~which stress the need for building a community of peoplé who will work

together tn generate useful knowledge and information about priority prob-
lems in mathematirs education, Professional organizations have important
roles to play in this effort. Yet, these responsibilities have been
neglecred. It i3 long past timc for positivv action,

At the Annual Meeting of the National Council of Teachers of hathe- -
matics, research presessicns have been co~-sponsored by the NCT™'s Research
Advigory Committec and the American Educational Research Association Special
Interest Group for Research in Mathematics Education, 'These presessions
represent one positive step toward satisfying some of the research support
roles described above. The papers that follow were presented at the 1979

presession in Bogton by three internarionally prominent mathematics
education researchers, *
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HIDDEN DIMENSIONS YN THE SO-CALLED, REALITY
OF A MATHEMATIZS CLASSROOM

Heinrich Bauersfeld
University of Bielefeld
Federal Republic of Germany

A Nearly True Story .

In old Russia two men meet in a train somewhere between Moscow and
Warsaw. Since the beaver collars’'indicate they are both mercharnts, one
of them asks: "Where are you going?" "To Moscow," the other replies.
"Hey," says the first one, "if you say you go to Moscow you must really
want me to believe that you go to Warsaw. But this trairn is headed for
Moscow and this makes it certain that you travel to Moscow. So, why are
you lying to me?"

These two men are taiking not only about directions, but more, they
are concerned with their mutual expectations and with their subjective
interpretation of what they "really" do. Though the replying man tells
the '"truth" from our contextual view, the asking protagonist understands
the utterance as a lie. :

Let us try an explanation. (This is not to kill a joke by explain-
ing, but rather to use the explanation to illustrate a more important
problem.) Competing merchants will hardly disclose gcod sources and
addresses to each other, The questioner therefore expects a non-destina-
tion as an answer. Knowing these rules of the interaction and hearing
the obviously true destination, he must construe a lie. Thus we laugh
about a man who seenis to be the captive of his expectations. He became
.accustomed to this game and for him it is reality, his reality. Seen
from a more general point of view our "truth" about what is the case is
no better or more valid than is his "truth'"--although we enjoy a larger
majority supporting our interpretation,

This story about "situations," "rules," "expectations and interpre-

tations," and '"subjective realities'" brings me directly to my theme:
hidden dimensions in the so-called reality &f a mathematics classroom,
After a short overview of mathematics learning as a social activity and
the role of related theory, the constitutive power of human interaction
will be concretely demonstrated with a documented classroom situation.
Following this, four deficient areas of research in mathematics education
will be identified and discussed with a viéw to changing paradigms of
regsearch. Tinally, I will come back to my main concern of pre-service
and in-service teacher training and wake some preliminary conclusions

for it.

The Contribution of Social Sciences

To view the learning and teaching of mathematics as a social process
~~a "Jointly produced social settlement' as Lee S. Shulman puts it (1979,

‘
»
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Note 1)--seems to be a fairly recent 1§sue.*uAlthough the ancient Greeks
provided us with famous examples of mathematics instruction through dia-
logue (e.g., Plato's "Meno" in Hamilton and Cairms, 1961), we still do
not have much information about the social dimensions of generating
mathematical knowledge and of developing individual mathematical power
within the classroom. Particularly, résearchers in mathematics educa-
tion have not spent much time studying these dimensions of human inter-
action, Other disciplines have produced relevant research specific to
themselves,. although not to the learning of mathematics. Speaking of
hidden or neglected dimensions within mathematics education is only
relatively true in the sense that researchers have not made use of
relevant developments in the other disciplines. ' '

Examples of such contributions come from symbolic interactionism
(Blumer, 1969); Gofiman, 1969), linguistics (Gumperz & Hymes, 1972;
Herrlitz & Gotterts, 1977), ethnomethodology (Cicourel et al., 1974;
Mehan & Wood, 1975; Mehan, 1979). The demarcation among-these disci=,
plines is difficult, because of their increasing integration through
interdisciplinary procedures, propedures which might also benefit mathe~
- matics education. Topics such as’ the generation of meaning and the
function of language in social situations, the actual shaping of
behavior and cognitive performance through interaction, the specificity
of communication in institutionalized settings, etc., apparently ferce
interdisciplinary apprdaches and have formed a new type of human science.

‘ There is a final point to make in this initial overview. From the
very beginning my <¢oncern is both pragmatic as well as highly theoreti-
cal. It is pragmatic since my goal is to improve mathematics teaching
and learning through both teachers' and students' actions. It is
theoretical because the "improvement'' and the "differentiated orienta~

~ tion" require the most sophisticated, reproducible theoretical framework
‘ available. Both aspects, the pragmatic and the theoretical, action and
reflection, are deeply interwoven. Albert Einstein has put it sharply:
"It is always the theory which decides what can be observed" (Mehra,
1973, p. 269). From a physicist one might expect td hear the comple-
mentary statement: It is always the observation (or the "reality") which
decides the theory. In the hunan sciencesvdifferent actions and differ-~
ent concerns often.produce different theories, and different theories in
turn produce different realities.

" This point is often expressed in education by saying that research
findings, like a theory on. certain classroom events, need special trans-
formation into teaching practice; or, "that there is little direct
connection between research and educational practice" (Kerlinger, 1977,
p. 5)3 or, "...what-is good-theory for-one purpose is.not a_good theory
for’ another" (Hilgard, 1976, Note 2). All of these statements are only
different expressions in an educational setting of the general point .
made by Einstein.
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TthCsttitﬁEive Power of Human interaction

Two dissertationg mark cornerstones for the discussion of human
interaction in the mathematics classroom: George Bernard Shirk's
"Examination of conceptual framework of beginning mathematics teachers"
(1972), and Stanley Erlwanger's "Case studies of children's conception
of mathematics" (1974). Both were directed by Jack A. Easley, Univer-
sity of Illinois.

Erlwanger's case studies are related to programs for Individual
Prescribed Instruction, His documentation -of students' mathematical
misconceptions and deficiencies demonstrates how mathematics learning
can be damaged by restricted teacher-student communication, a restric-
tion which leads to the near~total absence of negotiations over meanings.
It should be clear that the fading fascination shown for prograumed
instruction fails to provide a satisfactory explanation for the non-
appbarance of further research with such case studies.

Shirk's work with beginning teachers gives a. striking example of
the influence of subjective theories about mathema;ics teaching, the
student's role, and the teacher's role. Moreover, his documents give
a feel for the fragility of classroom discourse and of the impact of

these social situations on mathematics learning. Therefore, I will take

a brief example from Shirk's transcripts and use it for comments based
on theories from other human sciences,

The episode~presents an early part of a bégiﬁning teacher's lesson
with eighth graders at Urbana Junior High School. The topic’is about

slides, flips, and turns from "Motion Geometry" (a product-of Max Beber-

man's UICSM), written by Russel Zwoyer and Jo McKeeby Phillips.
preceding lesson Tom, the teacher, has defined parallel lines in terms
of slides. The lesson under discussion opens with students working on
positive examples. The episode which I am going to analyze starts with
line 39 of the tramscript. The teacher presents a counter-example, two
intersectin lines (see Figure 1).

Figure 1.--"Tom, tape of 4/4/72" (from G. B. Shirk
1972, pp. 173-174)

T - teacher, Tom K - student, Kevin R - student, Reggie
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ses +es look at the next figure, right below
it. Ya, ... now, are those two lines parallel?

-Nope.

Why not?
They cross each other.

OK, but, uh, ... according to what I've said about parallel
lines, what can't they do?

'Can t cross thenm: ...'(?)

What?

‘Can't .. they won't, they won't .. I'd rather not .. (ID}

What Reggie?
Um. B
... They won't come together ..

OK, but what did I say, what did I say on the first figure?
What could you do to get from one line to the other?

Slide. |
OK. There's a slide arrow that'll go, .. that'll take one

'line into the other,

wae Arrow,

Right? Is there a slide arrow, ... on the second figure?
N Reggie? ‘On the second figure, can you draw a slide
arrow that'll go from one of these lines to the other?

(7) Not any more, -

. Like the ... a slide arrow, ... will that take the,

...vwill that go from one to the other?

I don't know, .

Well, you remember what a slide arrow did?

Hm?

It, ... it moved a figure along that slide. Can’you draw

. one that'll do that?

Oh.

OK, is that a slide arrow?

M) o

What is that? What, ... what did you draw?
A circle, /

Well, you remember.

(Laughter)
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‘Zﬁf"T: ..« What that was called?
E,//%? R: (?)
. 18 T Boea anybody remember .o
| 79 R: A rotating oo '
80° T OK, we called it a what? ... A tam? \
BL R: A turn arrow, -

82 T: OK, 8o what you were starting to draw {n.was a turn arrow,

83 right? But I'm just talking about slides. Can you draw a
84 slide arrew? Just a straight line, a straight arrow,

85 that'll go from one, that'll take one 11ne to the other?
86 , {paus& for students to work)

First, I shall fo3low Shirk's own interpretation and then add my
conments later: .

In this episcde, Tom was working for a compound goal which he
wanted the students to reach: ... that they recognize the lines
illustrated were not parallel and realize there was a reason for
1t through the definition of slides. The students did accom-
plish the first part of this goal; but when they invoked a
- reason othey than that which Tom sought, it was rejected by him
as being inappropriate. The students weren't connecting the
lessons together, Tom could only see this as a completely
unexpaected deficiency in the students' undeérstanding of a
lesson which he believed had been learned earlier, so he turned
the lesson toward this aefieienvy in an effort to correct for
it. (Shirk, 19?2, p. 46)

The critical aspect centers around Tom's expectation that the
students would know all of the consequences of the definition
of "parallel.”" Not seeing this, Tom interpreted their problem
as having to do _.th slides; and this bothered him for he
believed that glides had been adequatq}y covered and, therefore,
the students should know them. He was also assuming that the
students would appreciate everything that he said and there-
fore, the problem would have tn lie elsewhere, i.e., in their
more basic preparations which he thought had been covered ear-
lier. {(Shirk, 1972, p. 46)

For th# te~analysis it is useful to note the major shifts in the
student-teacher interpretations of the situarion. The episode then
splits into four parts,

Part I, lines 39%-51: The teacher does not ~ucceed in using the
counter-~example to infer that intersecting lines cannot be parallel
(there 18 no slide arrow which would move the lines together). Unexpec~
tedly, he receives a much simpler answer, not invoking motion geometry
concepts, "they cross each other'" (line 43), Albeit correct, the teacher
rejects the answer as inadequate "on the basis only that they should
remember what he said in the previous example" (Shirk, 1972, p. 47).

21_ e
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The students become confused and uncertdin as evidenced by K's stam-
mering and brief withdrawal (line 48). - ,

Part II. lines 52-64: "mom s now divecting the students' attention
~toward the drawing again ia an effort to get them to see the connection
between it and the slide" (Shirk, 1972, P. 48) Repeatedly he uses th~

~key word "slide axrow."

. - . :‘l ) . ‘
The students try to guess the teacher's intentions. Their answers

are short and cautious: '"Slide" (line 54) and "..arzow" (line 57).
Their uncertainty increases. Thus under the teacher's pressing Reggie
modifies his answers from "Not any n. e" (line 61) to "I don't know"
(line 64). "With their initial efforts rejected, and Tom emphasizing
slides, the students begin to look around for ways to slide the two
lines together for there was nothing in the earlier portions of the
lesson about 'no slide' or 'not paraliel'™ (Shirk, 1972, p. 48).\

- Pect III, lines 65-86: Still, the teacher has not giveanp his
initial aim. His impulse, "Well, yo. remember" (line 74) is an attempt
"to get Reggie to put together the formal principles by pointing out to
him that what he had drawn were.turns rather than slides" (Shirk, 1972,
p. 49). Reggie's "failure" (as seen from the teacher’s.eyes) justifies
the causal ascription that the students have forgotten ail about slides.
..erefore, the teacher begins to "reteach'" the concept towards the end
of this section.

The students, however, "in an effort to come up with the answer
they thought Tom wac looking for (namely, a slide arrow), invented slide
lines between the two intersecting lines™ (Shirk, 1972, p. 49), as did
Reggie at litie 69 (see Figure 2). Reggie's misinterpreting the teacher's
question (lines 74-76) "What that was called?" is completely in line with
his looking for slides. -The drawings of the students in thig part (see
Figure 3) expose the extent to which the teacher's pressing has contri-

* buted: to "spoiling" the students' concept of "slide” and of "slide arrow."

Nevertheless, the teacher's interpretation that the students have not
learned their slide lesson is not diminished but rather reinforced.
' N

—
T~

Figure 2. '"Reggle at line 69" Figure 3. '"Students at line 83"

4
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Part IV, lines 87-135: (This concluding portion of the episode is not
included in the sbove quote,) "The remainder of this first episode involves -
Tom's attempts to reteach the concept of slides to the students" (Shirk,

1972, p. 51). Aud I- works on that rehearsal until he gets the conviction
that "he has recomnected the students with slides and parallel lines"
(Shirk, 1972, p. 52).

. On a more general level Shirk explains the episode using the terms
"split personality" and "guessing ahead" (the latter from John Holt, 1964).

A "split personality" .., occurs when the teacher is teaching one
lesson and the students, in an effort in '"psych out" the teacher, are
actually learning another ... The "split personality'" in the lesson
occured as a result of the conceptual frameworks which governed Tom's
actions, rather than being a part of those frameworks themselves..
Tom, acting in accordance with his frameworks, interpreted the students'’
behavior in a certain way and then acted in a manmer consistent with
his conceptual frameworks., For their part, the students attempted to
guess ahead and therefore acted differently. These actions resulted
in one path being taken by the students while Tom was trying to lead
- them along another. (Shirk, 1972, .p. 43)

In the above énalyéis Shirk uses the classical relation of cause and

- effect as he matches causes with personal attributes, That is, he traces .

the outcomes back to properties and actions of single individualsL As a
result he is led to somewhat discouraging conclusions and recommendations.
From his finding that "there was no change discernible within the congeptual
frameworks', he concludes that the future teacher education programs ''must

be so designed so as to be assimilable to thé preexisting conceptual frame-
works" (Shirk, 1972, p. 165). 1 shall try .an alternate answer to the teacher-
training problem later, but first let me give an interpretation, of the

. episode from a diiferent paradigm ‘of social action.

A description of the situation ‘as constituted through the interaction
of the participants can challenge the usual causal model, cast doubt on
predictive conclusions, and possibly shed 1ight on the use of language in
the mathematics classroom.

The constitutiun of the social situation. Priacipally, and taken as
a piece of an ongoing process, the episode cannot be reconstructed suf-
ficiently--neither from personal variables, from characteristics of the
single partic!pdnt, or from the documented speech production. Hence, from
additional interviews with the. teacher, and from essays and "comment cards"
which the teacher had to write, Shirk has distilled the teacher's conceptu-
slization of mathematics education, of his role as a teacher, and of the
student's role. Shirk uses this set of statements only to explain the
taacher's moves. :

4]
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We do not have any comparable information abtout the students, However,
the interactive nature of the process and the mutusal relatedness of expecta-
tions and interpretations can be partially reconstructed from the transcript.
For- the purpose of this arialysis consider the table on the following page.

The first two lines in Table 1 reconstruct the teacher's interpretation
and the students' interpretation of the four parts, (A more detailed
analysis can be developed through following the discussion step-by-step.)
Comparing .the mutual interpretations in columns gives a rough but sufficiently
clear idea. :

'The teacher's immediate objectives change following his changing inter=
pretations of the process., '"Guessing ahead" the students' interpretation
of the teacher's intentions changes as well, By no means are the actions
of the two sides, teacher and students, reactions only to the preceding move
of the other side., It is commonly believed that individuals react to the
actions of another when in fact they react to their self-constructed ,
interpretation, Yet, '"reaction" is misleading. Far from the simple meodel
of stimulus-response,the participant's actions in this social situation are
generated through complicated, internal reflective activity. This subjective
reflective activity takes into account nof only the  actual and perceptable
moves of the others but also the more general interpretations of the situa-
- tion, and one's own role in that situation. Furthermore, actual interpreta-
tion of related former experiences exercise an influence on the current
ongoing interpretation. Each participant's actions contribute to the change
of the other's, of their interpretation and their _acti.ons. And through this -
process they contribute to the change of the participant's own interpretation
‘and action. Thus it becomes reasonable to speak of the "constitution" of the
_social situation (Mehan & Wood, 1975). More precisely: The social
gituation is constituted at every moment through the interaction of
reflective subjects. . Ethnomethodologists therefore describe ''reality
as a reflexive activity'" (Mehan & Wood, 1975, p. 8)..

The episode under discussion is an example of the constitutive power
of human interaction, i.e., the interaction constructs the subjects'
various realities. oth teacher and students act according to their sub-
jective realities. /The students draw turn arrows for slides; the teacher
diagnoses learning deficiencies; and the teacher and students work clearly
at cross-purposes ﬁonvinced they understand the situation clearly.

. / .

Every moment is mysterious, as the understood horizon of the moment

is inexhangtible. Every interpretive act indexes this mystery in an
unpredictable say. A person's every action is thus creative; it
reflexively a.ters the world. The person begins with certain materials
that set limits, and then acts and in acting alters those limits,
(Mehan & Wood, 1975, p. 203)

Forms of life are always forms of life forming. Realities are always
realities becoming (Melvin Pollner in Mehan & Wood, 1975, p. 32).




Aspects of analysdis

i:. lines 39«51

Table 1

Interpretations and Changes

-

II: 1ines 52-64

lines 65-~86

I1I:

pI2331aneg

IV: lines 87-155

Use counter-example

Prompting will help

They don't really know

Cive up. and retéach

Teacher's _to strengthen concept. | the students catch on. what a slide is. the concept of "slide,"
Interpretation ' ' : : : '
Disappointment about Increasing disappoint- Confusion. Resignation,
student's failure. ment., - |
Having not treated There must be something | He insists on arrows He mants.us to play
Student's counter-examples to say or to do with- which connect the the "recitation
Interpretation they think about "slide arrows." lines. game."
v easier descriptions.
. ° (2]
Co~vect the non- Draw the student's Find out that there is Help thg students =

The actual task,
teacher's view

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn -.'.---.«nnu-u-r--u--q

The actual task,’
student's view

ex.stence of a slide
to the non-parallelism
of the liues. ,

Tell if intersecting
lines are parallel

attention to the role-
of the slide arrow,

------- L X L X X T ¥ L T X L LR T X X

.Find another

desgription. Later
confusion, "Don't

know,"

no slide arrow for
intersecting lines.

Look for new arroﬁs
which might match
intersecting lines,

recongstruct and
recorrect the concept
of "glide."

L L L VY Y Y NI Ry LT X Y Y ¥

Tell what you have
learned préviously--
"like we sald it
yesterday..."

Meaning of "slide
arrow" for student

Move in positive
examples one line
onto the other.

(Opeﬁing and changing.)

Any move,'straight )’
or turn
or up-and -down. *&

oy

(Like in part I7
but scarred and
more divergent.)
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The caﬁstttuclon of waaning. . Not cnly sub jective intorpratation Jnd
angaasmant c%ange during the proceas but slso the aime, the actual tansky,
and even the concepts. A comparisoy of the eachax's and the studenrn' , -
views during the epiacde-of the task (see Tabie -1, third -gnd fourth Lines) Ce s
amphenizes the semancic chenge of rhe 'problem situation. Clearly. &ach |
perticipant®s view of the sctusl task ko be done is diffarant and they'

vary during the course of the episode. The task musk be understood as a
function of the situattom, -

_

-

“~

For the students, the concept of “slide arrow" aleo varies scross the = "
eplsode (see Table | Fifth line), 1In the beginning the previous experiences ‘
with parvallel lines (and elide srrows woving them togethevr) ifs dominant.
The {ntervention of the counter~example and .the following discussion with
the tescher produce doubtn about where to locets the borderlines of the
concept, What is-and what is not to be {wncluded? .The students’ interprew
tation of the teacher's insistent questlions increasingly spoils the concept
énd leads to an arbitrary guess ss to its true meaning. Any type of arvow,
carved or up~-snd-down, is used by the students (see Figures 2 and 3),

Without further information shout the students’ thihkingtthe affect of

the reteaching is difficult to evaluate. Surely the residusl stavus of the . . 
concapt “slide arvow” w1l differ from'its inlvial status, but {t might not o
be fwproved.. Due to the high affective load during part LI, the comcept . | e
aiow wight be vulnerable to future misunderstanding in asimilar situvations,

Thus, the logical Qi;netpln of fdentity is nct.héplicablem The word : .

Melide arvow’ doss not saan thé same to every participant., Moreover, the

meaning changes during tie episode vepeatedly and vemarkably. Bul, if u

- probloms and concepts become functions of the asitustion instesad of being 3
constant end stable, L& then becomee necessary to consider the soc.al consti« '
tution of meaning, f.¢., the constitution of meaning through human interaction.

Herbert Blomey (1969) makes the same points “Symiolie /nteractioniswm
seen meanings as socfal products, as creationy that are formed in and through
the defining activitivs of people as chey Interact” (p. 5). YHowever, ag a
metter of princiole, thers is small chance of predicting the outcomes of

such epissdes at their beglondng, Hor is there much chance of making pre-
di@tf@na about a Llater stage from the basis of 4 preceding one. Since we
cannot ascribe the constitation of mz2aning to one single participant (¢.g.,
the teacherd, we are nct in a sositlon to ese causs!l models sy adequate ;
descriptors of individual secial interaction, particulsrly not of ssthematics
teaching and learaing. . A% cyery day mesnings do not seet the canons of
fogie, they kre tranwtovesd by literval description. These transf{ rmed
peanlavs are. greeablie o cavwsl wudels,  Fvery day Hife i3 not™ (I ehag &
Waod, ¥O¥ op. 6

A% g polad e annlyors R(dﬁ fote s rovolnt fon of vhe boadamont gl
mipg sl L O Y how ne Themag L B, F962) fan £ ho bieeon wcfencen voles gre
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different than in the natural sciences, For example, they are rules about
the constituting of aituations and meanings rether than rules about the
s{tuations and meanings themselves, They are rules about stracturing the
process rather thap about the structure of the process (see Mehan, 1978),
In the huban scisnces the interpretation-assessment paradigw will replace
the canse-sffent paradism borrowed from the natural sclences, :

- The role of language, ' The above episode also prompis 8 naw Look at the
role of language in mathematics teaching. Years ‘ago linguistic research
would have used the utterances in Shirk's epieode for a syntactical and a
seméntic anslysis of the material. For example, the anglysis mis st have
polnted to a Yack of adjectives, Or, it might have noted that the units
of speech congist only of short or broken sentences, that paratacticsl
structures dominate, or that many daictic wovds appear (words which
demonstrate or point to something--"hers,” “this.™ “there," ete,), With-
out any additional information the enalyst would speak of a "restricted
code” and perhaps a resulting poorly developed mraning. '

It is the fundamental idea {n Chomsky's theory (1957} that we cannot
reconstruct the constitutional process of communication from the surface.
that is, from vecorded speect, HNeither “discovery-models" (for the dis~
vovery of new grammarg) nor “decision-models” (for the decision sbout the
sdequacy of a grammar) will work., Chomsky maintains that these models

“only make uge of the linguistic data. Since we have to analyze the tules

. of styucturing communication,we must analyze evalustive structyres. of
{ndividual interprctation and ass -ssmeut, and this aralysis xequires un
"evaluati a~model™ (for the evalustion smong existing arammars). At this
point there is a change of parsdigm from objective {linguiscic) data to
interpretative structures as the object of analysis, Since Chomsky's
work, soclolinguists bsve increasiogly scudied the use of language {n socia!
interaction.

A dateresting and helpful feswe is the concepr of tadexicaliry, If
thers is ao further information, then most pesple will not undorstand the
discourse in lines 41-51 of the episode:

41 K Nope. )

42T Why wor”

% B They evesa eact othoy .,

A1 OB bBat ., ah, . uc&@fﬁ?nm oo wpat Pleo wndd phoant ooarst ol
b Proed, whot eon’t thee do”

A E Gan'e erevs fhes L 1)

W E Wi

GECE Enat e L fhey wonT L tney wen' o 10 vathesy wor | AL
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49 T: What Reggle?
50 R: Um. - - | | LT
51 K: ... They won't come together ... (Shirk, 1972, p. 173) B

Mathematics educetors may even become doubtful about the topic and

meaning of the discusaion if they don’t know that the documsent is related

to matheratics {natruction, Bar-Hillel (quoted in Mehan & Wood, 1975)
defined such "utterances that require contextual information 2o be under~
stood’ as "indexical expressions," - Thus an "informed" outsider can even
“have difficulty understanding what is going on in a discussion. It ia
difficult to realize what the participants {ntend fo gay and to identify the
wesning they create in the given situation, As 1 prerequisite for conmunica=~
tion, participants have vo share common understanding which they take as

sn implicit basis of reference when speaking to each othex. While speaking, .
each participanc anticipates the understanding and the interests of the
spacific addressee, The speech gets organized through the expectation of
what the addressed person already knows., Each speaker uses his faterpre-
tstion of the given situation and of the addressee gs an index from which

he forms his utterances and from which he decides his "choice of grammar."

In the classroom, the "ceachar 8 instructions are indexical expressions
which requires teachers. and children to employ contextually bound interpree
tative practlces to make sense of these instructions"” (Clcourel et al., 1974,
p. $29). What & participant vays not only transports the intended message,
but over and above the message the utterance contains informstion about
his understanding of the topic, his interpretation of the situation, his
expectations of what the others might krow, ar well as his present emotional
concerns. ‘ :

Hence, indexicallty is another l;bel for the zhesis that the situation
influences how language is used. Not only are content and meanings negotiated
and constituted in the social situation, but also the use of language and
the pexformance of the speaker are co-determined, This ia true for both
the syntactical structure of the utterances and for the actual choice of
words, (From this point of view Bernstein's distinction (1973, 1965) beéween
"elaborated” gnd "restricted" codes might be more an issue of the indexicel
and reflexive constitution of the situntion rachex than of the competence
of the speakers,

Mathematicians, in particular, hove invested much effort in producing
universal statements, and most school mathematicians would claim any mathe~
matical statement as non~indexical, l.e., as universsl and objective, Hou~
ever, this conviction blocks insight into the {rreparable incompleteness of
utterances, and move genera', of any symbollc action. Each uttersnce, just
-aw each symbolic foru, is necessarily incomplete, because {: has to be filled
Iin with mesning via contextusl interpretation. Through its genesis and

chain 58 definition a8 cuncept inevitably gets infiltrated with contextual I
information, Ana “every attempt at cvepsir {ncreases the nomber of sywbols
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that need to be repaired" (Mehan & Wood, 1975, p. 93). Therefore, under-
standing mathematics is not only a cage of 1ogic, or of divergent thinking,
or of proper definitions, As far as understanding is resliszed in social
interaction (or through communication, which is the very same thing) it
{nescapably becomes dependent upon the interpretative, indexical, and
reflexive conatitution of mearing.

k

Four Deficient Areas of Research--Mathematics Education's Hidden Dimensions

The process of teaching and leazning mathematics can be viewed most
aptly as a highly complex human interaction in an institutionalized setting=--
an- interaction which forms a distinctive part of che participant's life.

FPour aspects in this issue deserve more detailed discussion since they
represent weak areas of research.

1. Teaching and learning mathematics is realized through human inter-
action, It is a kind of mutual influencing, an interdependence of the .
actions of both teacher and student on many levels, It is not a unilateral
gender-receiver relation. Inevitably the student's {nitial meeting with
mathematics is mediated through parents, playmates, teachers. The student's
reconstruction of mathematical meaning Ls a construction via social negoti-
ation about what is meant and about which performance of meaning gets the
teacher's (or the peer's) sanction. "Symbolic Iinteractionism sees meaning
as social products, as creations that are formed in and through the defining
activities of people as they interact" (Blumer, 1969, p. 5). How can we
expect to find adequate information about teaching.and learning when we
neglect the interactive constitution of individual meanings?

2, Teaching and learning mathematics 1s realized in ingtitutions
whi:h the society has set up explicitly to produce shared meanings among
their members, Institutions are representéd and reproduced through thelir
members and 'hat Ls why they have characteristic impact on human inter-

cactions within that which ie institutional. Institutions establish norms

and roles; they develop rituals in actions and in meanings; they tend to
seclusion and self-sufficiency; and they even produce their own content,

in thig case, school mathemati¢s. How reliable are studies on the effects
of mathematics education if they do not take into account the institutional
impact on teacher and student? The question becomes crucial when one
thinks about any application of knowledge lesrned at school to situations
outside the school.

3, Mathematics education conastitutes s distinctive part of the student's

life as well as the teacher's, Anvone who 15 active in mathematics will
Jearn something about himself, especially since the activity happens in
{nteractive situations, Oun the other hand one can learn mathematics only
by actively engaging his previous knowledge of related subjects and actions,
*horefore, mathematics education is deeply related to the man-made world

of symbols and meanings, to common sense, and to everyday life, Mathematics
education depends vn our social and historic conditiong, How can we dare

to make anv prediction about the mathematical abilities of a student and

i)
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about his chances to tavelop these abilities if not by carefully relating
such statements to his personality and background? ‘ :

4, Scientists are not the only ones who have difficulties dealing )
~ with highly complex issues, The orientation for actions and_decisions
in the cladsroom continuously requires the reduction of complexity. On

the other hand, the underatanding and the effective reduction of complex~ - -

ities demands their total unfolding and complete xeconstruction, To date
scientific analysis has been incapable of reducing the complexities of an
actual mathematics classroom sufficiently for guiding a teacher's decisions.

Yet without such guidance it is tmpossible to plan effectiv: .’.eacher-training
programg. :

Fundamental Problems of Research'and Development

Within the last #ears my-.view of the structure of the classrean process
has changed as & result of collecting information from several disciplines,
participating in mathematics lessons, and analyzing video-taped mathematics
lessons, This subjective change includes the aims ¢f my work, the subject
to be studied, the methods of research, as well as the underlying paradigms
of my thinking. This personal event is worthy of mention since discussions
with colleagues leads me to believe thaf my subjective difficulties only
mirror much more fundamental difficulties within our profession. Philo-
sophers of science agree that such difficulties within a profession are
strong indicators of fundamental change of paradigms.

In the present transition stage three theses seem to be of importance'

1, Mathematics education is deeply in need of theoretical orientation.
We have too much reseaxrch on too small a theoretical basig, Many opening
addresses of APA, AERA, and SIG/RME, &s well as journal articles from
within the last.years have complained_about this problem, e.g:, Lee Cronbach
(1975), Lee S. Shulman (1979, Note 1), Ernest Hilgard (1976, Note 2). Pper-
haps there are too many short-termed research contracts. Perhaps there is
too much prescription for "acceptable" research programs. Or, perhaps,
there is no support for methodological heretixs and thus no encouragement
for young researchers to try unusual approaches. For sure, there has yet
to appear an adquate forum for theoretical discussion (compared with West
German publications, the United States provides for very littla discussion
of metatheory.) Whatever the cause, I do not believe that there are not
enough new ideas,

2, Research and practical developments follow different paradigms.
The main stream of research still follows the paradigm of the natural
8clences, stating an objective educational reality, using well-defined
‘and quantifiable concepts, and analyzing the relationship among them
through statistical means. For & long time we have heard and sccepted
complaints about the complete lack of classroom applicabllity of research
results,” (See Kerlinger, 1977, for a sum-up from a researcher's view.)
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On the contrary, the majority of a teacher's classroom decisions \

are made via common Sense and intuition rather than through rational analyses V

by scientific means. 1If she/he 1is a good tedcher then her/his actions are \

based on a more differentiated perception of the classroom events than

research‘recognizes. She/he is more open to contextual changes, "knowing" a

student, using "tacit knowledge" (M. Polanyi, 1966) and informal reflected
_...experiences._. Compared. with these "hard" social facts, current reseaxrch .. . . _ . . _ .~

appears as "'soft-ware." It is necessary that research in mathematics ’

education takes notice of this gap if a claim for practical relevance is to

be established, ‘

3. Interdiséiplinary.approachés are promising, if not necessary, for
closing mathematics education's "g¢redibility gap." Within the broad area
of social sciences, the discrepancies between rationalistic and hermeneutic
descriptions, between naive and scientific constructs, have been realized
and investigated much ‘earlier. It is time to integrate these f£findings into
our profession and to transform this knowledge to the specific conditions '
of learning and teaching mathematics.

Unlike the natural sciences, the human sciences must deal with an
objective social reality on the one hand, yet on the other hand must-deal
with as many realities as there are reflective subjects. ‘Paradoxically,

~modern physicists have a highly developed understanding of explanatory = o
models losing their meaning in the light of more comprehensive theories.
For example, the question of the "divisibility" or.the "consistency" of a -
light quantum (photon) makes no sense in a general theory of elementary
particles, because the theory describes the relations among elements but
is not concerned with the nature of the elements themselves. This is very
near to an important issue of constitutive ethnomethodology. The structuring .-
activities of the participants form ("constitute") the social situation
among themselves, and the process and rules of these "'strugturings" (as
Mehan calls them) build a core theory of social action, The theory is
related to structurings rather than to structures of the situation in
usual social sciences. That is, there is greater generalizability within
the process of structurings than within'the structures themselves,

Implications for Teacher Training

‘Those who find the discussed theories and interpretations more or less
acceptable might find themselves forced to think about consequences. "It
seems likely, that innovation in schools will not be of a very radical kind
unless the categories teachers use to organize what they know about pupils
_and to determine what counts as-knowledge undergo a fundamental change"
(Keddie, 1971, p. 156)., Shirk's (1972) findings about the stability of
fundamental conceptualizations across teacher training apparently do not

leave much chance for that change.

How is it possible for a beginning teacher

to overcome the sixteen or more years
This problem is especially difficult,
experiences often dominates any later
and leads the beginner into an almost
system's characteristics.

of his own experiences as a student?
since the contextual force of these
verbal information about education
unconscious reproduction of the school
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But, if we form our cognition and behavior about teaching through social
situations, then we can also change this formed cognition and behavior through
social situations, We learn to behave in social settings only through the
reflected participation and action ir social settings. Similarly, a teacher
will learn to teach or to change his teaching pattern only .through reflected

teaching: Yet, this is not the ruling model of present pre service teacher_m o

training.

. Usually the student teacher learns about teaching in contexts very
different from classroom situations, The organizing interest for picking up
knowledge in lectures is more along with passing:examinations tHan related
to later classroom application. Through various lgctures and seminars the
- student teacher collects incomplete eclectic knowledge and she/he is left
with the unassisted task of integrating this knowledge into an applicaole
system for the living classroom,

If the constitutive power of social situations on behavior, meaning,
and language is as strong as assumed here, then the student teacher will
have' to spend much more time planning, accomplishing,and reflecting upon
real classroom teaching experience. From the very beginning the teacher-
to-ba must encounter an adequate complexity of ‘social classroom exchanges:,
"Adequate' means that the complexity of the teaching-learning situation

might be reduced in ‘quantity, e.g., via\a reduced number of students to teach™ "

or a reduced amount of lesson time, but not reduced in quality (as simula~-
‘tion games or video~tapé analyses, e.g., would cause), If we claim to educate
human beings, then a teacher will have to receive a much more careful,

holistic preparation, :

‘This, of course, will réquire support and development on the side of
research as well. And this research, at least a reasonable part of it,
will have to follow the interpretive paradigm. "Science at its best is
thus like a firm but gentle hand that holds a butterfly without crushing
it (Kenneth S, Bowers, 1973, p. 332).
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INTULITION AND MATHEMATICAL EDUCATION ' a

, E. Fischbeih

Tel Aviv University

. ‘ L o ' , Israel
- The Concept of Intuition .

. Though the concept of intuition has various meanings and has been
defined in various forms, there is a common feature which is always "
mentioned; ihtuition is immediate knowledge. In other words, an intuitively
accepted truth is self-evident; its acceptance does not require any
explicit proof, For imstance, we accept directly the statement: "The
shortest way between two points is the straight line," or "It is always
possible to find a natural number greater than any given naturad number. "

A great part of mathematical axioms are based on such self-evident, .

. intuitively accepted truths, On the other hand, there are various mathematical

truths which contradict intuition, and learners often have difficulty

accepting these truths. For instance, it is difficult to accept that the

set of natural numbers is equivalént ‘to the set of positive even numbers.

1t is difficult to accept that the set of points of a segment is equivalent

to the set of points of a square or of a cube. ,
My opinion is that the intuitive reaction of the learner cannot be

neglected by mathematical education for the following reasonsg: o

a) Wrong intuitions render difficult the acquisition of correct
interpretations In a given field. Even if the student has succeeded in

learning the scientifically correct version, it is not certain that a primitive,_

false interpretation has been eliminated. The survival of such wrong

interpretations may endanger the adequate use of correct knowledge, especially
in non-standard situations.

b) Correct intuitive interpretations are able to stimulate productive
mathematical thinking. Pure, formal, symbolic representations of mathematical
truths are, by themselves, not efficient &s mental tools, espocially when
the solution to non-standard problems is requested

5
Some Characteristics of Intuition

 Some general properties characterizing intuition are:

1) Self-evidence. This basic characteristic was already mentioned.

2) Coercive effect. As a consequence of their intrinsic obviousness,
intuitions exert a coercive effect on the processes of conjecturing, explaining,
and interpreting various facts.

The first three parts of this paper summarize (with some modifications) a
paper presented at the Second Conference of IGPME, Osnabrick, 1969,

38
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3) Extrapolative capacity. Intuition, like analytical thinking
transcends direct, empirically obtained information.’ Specific to intuition,
however, is that it represents a mental leap which cannot be completely
justified by logical or factual arguments,

<

4) Globality. Intuition is described as a global, synthetic view,‘f’“*“f“'ﬂit::i;
as opposed to analytical thinking. Being a condensed view, intuition is
frequently expressed by visual symbolization.

5) High stability. Intuitions often exhibit high resistance to
teaching influences and to formal experimentations. As already has- been
mentioned, primitive interpretations may remain active even after the
' student has acquired corresponding, correct information. We shall return
to that point later. '

A Classification of Intuitions

A. Several categories of intuitions can be identified.

a) Affirmato;y intuitions are self-evident representations, inter-
pretations of explanations. Thc previously cited examples refer to affir-
matory intuitionsu Let us add some more examples. It appears as being
self-evident that: - "The opposed angles formed by two intersected lines are
equal.”" Or, "In a triangle, each side is smaller than the sum of the two
other sides." Finally, "Through a point outside a line, one, and only one - - — --

_ line can be .drawn, which is parallel to the original "

b) Anticipatory intuitions are preliminary, global views which
precede the analytical, fully developed solution of a problem.

c) Conclusive intuitions summarize, in a globally structured vision,
the basic ideas of the solution to a problem previously elaborated.

‘B. A_second classification refers to the origin of affirmatorj ig%uitions.- ¥

a) Primary intuitions are interpretative or-explanatory beliefs
which naturally develop in human beings, before and indépendent of systematic
instruction. Such intuitions are profoundly influenced by the cultural
setting. For instance, we have a natural, trimensional non-isotropic rep-
resentation of space., Another primary dntuitive representation, weight, is
an intrinsic quality of objects. This does not mean that primary intuitions
are fixed forever. On the contrary, they are largely dependent on our
personal experience, What we mean when speaking about primary intuitions
is that such intuitions develop naturally in the child as a result of basic
daily life experiences.

b) Secondary intuitions are those which are developed by systematic
intellectual training (generally, in the school setting). TFor instance, to a
physicist it seems natural to affirm that a body keeps moving with constant
direction and velocity if no force intervenes. This is a secondary intuition,

o,
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which contradicts the primary intuition ‘that a body keeps moving only if a
force acts on this body.

The above classification implies the following fundamehtal hypotheaia-
Intuitions--though appearing as givens (i.e., as produced by some a priori
intellectiual méchanisms) “ate, in fact,. changeabié They may. be. bu.lt,
transformed correctedlor eliminaned as a result of adequate training.

\ A corollary is that even learned truths, elaborated by a highiy complex
‘conceptual system, can attain the characteristics of intuitions, i.e.,
Bﬁfome accepted as natural self-evident truths, °

c.‘.Operational and content:priented intuitions. B S
- l
a)’ Operational intuitions are those which express the’ feeling of
validity which accompanies logical operations. For instance, in a syllogism
the conclusion is determined by the premises, but thel validity of the
syllogism, as a method of deducing a truth from previously accepted premises,
cannot be proved; we must accept it by intuitica (Ewﬁng, 1941, in Westcott,

1968, pp. 17-19). It is by intuition that we accept |the universality of .
inductive inferences., . \ o

Generally speaking, the axioms of logical thinking-are based ou such
fundamental beliefs, Mathematical education should not be satisfied with
training blind; automatic intellectual skills corresponding té the laws of
logical thinking. New intellectually adequace beliefs, i.e., intuitions,
must be built in correspondence to the learned truth tables. For instance,
it is easy to teach the pupil the truth table of implication. But the
problem is that he must get accustomed to feel the rules of implication as
obvious and to act accordingly. Such intuitions must be developed as contente
free mental structures.

b) Content-oriented intuitions wefer to repregsentations, explana-
tions, or interpretations which express«~in a correct or in a wrong manner--
our mental attitudes toward reality, Elementary space intuitions, elementary
chance evaluations, explanations and interpretqtions of physical phenomena.
accepted as self-evident,etc. belong to this category. While operational
intuitions are related to thie formal schemes of our logical inferences,
content-oriented intuitions are related to phenomena as such., Of courge, in
concrete cognitive processes both categories are strongly interrelated..
There are intuitively meaningful mathematical operations which beloneg
simultaneously to both of these categories. For example, many geometrical
transformations can be completely integrated in a logical reasoning without
losing their iconic sigrificance, The statement,''The product of two line
reflections is a translation', has a full pictorial intuitive meaning. At
the same time, it is a formal, a priori acceptable truth.

The Nature of Intuitions

Do intuitions really have essential features in common, or has language

44




Fiavhhotn

sloply equated varioes forme of cognitive resctions on the banis of some
external, aceldentally similay aspects? Irtuitions represent the bueic
wantal osechanisms for connecting knowwledge wilh actien. Strictly speaking,

' knowledge is image, i.e., an internal, subjective replication of objective

realities. Concurcently, knowledge 1s basically oriented towards scrion: -

“the basic role of knowledge is to help prepare for action. In the case of

sengory péreeptions, the transition from representation to action may be
divect: o pareeptive (sensory) representations of the concrate Eratures

of real objects and events describe«<and thus prepare~~our possible actions
on them (on the basis of previous expsrience). By dimeriminsting and
synthesizing signale, by evaluating distances and intarvals, we dre preparing.
and elleiting adapied, efficient reactions. Generally, parceptions are #o,
directly implicaved inte action (by their origin and structure) that by
themselves, they con prepare and direct action, Ih Paviov's terminalogy,
perceptiony constitute the first signal syate-, " .

it 1g not the same with symbolic forms of knowledge and, particularly
with logieal, analyrical thinking, Solving a problem by analytical pro«
cedures Lo, moce or lose, a lastiing process. an explicit, logleal process
is timewconsuming. Very often it cannot be etffective if a dirvect, prompt,
rapid form of adaptation i3 required. In my opinion. rhe essential role of
Intuirion (s to translate cognitive acquisitions into terms of action.
Intuitions shove essential features with the iconic forms 8% knowledge,
enebling them to cranslate information directly in terms of prectical dect-
sions - - The follewing exsmple illustrates this point,

Guppo e Dy | intond o cross the street, and I look left to sece if
any vehicies ave app ocaching. 1 quickly evaluate the number of vehicle.,
thetr {(decreasines distaonce, their gpeed, and the width of the strest *
intend Lo eross., In Less then a second 1 jgek sowe thing which may be termed
as &t “behavioral conclusion.” I decide to cross the street or I decide to
eontinge to wakt. [ 1 decide to wove, the decision includes speed ond
direciion, in facr, in such a situacien, percepbion, evaluation, decision-
waking, ond eitective behavior are deeply interconnected. When estimating
the odistance and the speed of the appreaching cars, the distance 1 have to
eover 4n ordet to reach the opposite gidewalk» ete., 1 get a unique, globat
reprosentation of the whole situstion.  This global evaluation includes ax
antickipation of the effoves and reactions which will enable wme to oo
eotriitly with the sftuation, The pereefved, estimated distace 16, in face,
a divect estimation of wy own elforts o cover that distance, o dircst
prepagation for approadiete, clieetive reactions.

Ferception does not aced any fntervenioy, connvetive for gulding actinn,
Pereeption Lo By fesell the beginuing of action., The jconiec and the ey active
madlen of represestation ar ¢ deeply fatercommected by sengsorisotor mechanisms .
T 4% aot ety sam with the symbolic form of represestation. By ftg NOEY
mptere, eynhoiic reproscatat ien bolowes to a difkerent. avsrem of conaectiens
and peane of caproosion than rhe feonie and the eractive.  An intervenioy
reghanian of twamelai tor betoo cn o syebolie and ensetive fe neoeded, aad thibn

. - » e > .
RS 88 dahi,

M




47

Finchbein

Intudtion 16, sboultaneously, a derived form of cognition~-axs thinking
ta~-and & programme for action, as perception iz,  Intuition and perception
have easential common festures and for this reason the term intuftive koowledge
is sometimes used for denominating both categories. Both are global, direct,.
effective forom of infoxmation,

The differences between intuition--as a specific form of knowledge~-and
perception is that intuition does not directly reflect én object or an event
with all its concrete qualities, Intultion is mostly a form of intexpretation,
8 golution to a problem, i.e¢., a derived form of knowledge like symbolic
knowledge. On the other hand, the difference betwhen intuition and analytical
thinking is that intuition is not analytical, not diacursive, but rather a ’
compact form,of knowledge like perception. Liks perception, intuition does
not requive extrinsic justification., With perceptibn we have the feeling of
being plunged divectly into .the world of material olijects. Perception appears
to be reality itself rather than just appearance, With intiition, we hav
the game fecling of being in the object -and not a siwple interpreter of it.

Being a derived form of knowledge like analytiesl thinking, intuition can
organize information, synthesize previcusly acquired experiences, select
efffcient attitudes, generalize verifisd reactions, and guess, by extrapolation,
beyond the facts at hand. The greatest part of the whole process is unconscious
‘and the product is a crystaliized form of knowledge which, like pereeption,
appears o be self-evident, intermally structured,snd ready to guide action,

in its anticipative form, Inteition offers u giobal perspective of a
possible way of solving a problem and thus, inspire. and direcis the steps of
geeking and building the selution, In its conclusive fore, the role of
intuftion is to condeyse--again~«in a global, compact view, an snalytical
soluticn previously obtained, fIn this form, too, the role of intuition is
to prepare action. That firil, concentrate interpretotion {s destined to make
the solution diveetly useful 19 an active, productive thinking process.

Beforve continuing, one rvemurk is necessary. When speaking about action-«
tn conncetion with {utuition--we ate rererving to beth external and intele
lectual actions. the extercal ones are the primitive corrvlates of intultions,
Bireet spatial and time estimatiens, rudimentary forms of distance evalualions
apd of relavive frequemcy evalvations, and global comparisews, ave examples
vl this type.

On the other hand, while thinking, while mentally experimenting, while
elaborat ing ou explanation, or while loocking for a new theoretical moe d,
we are alse ccting.  In thin case, as well, we need “an intuitive view” tou
ingpire, to sulde, ro divect, to prepore the wontal acl.on- Lo keep the mental
process moving in g produstive direction.
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Atrer the emergence of the elementary corceptual structures in the
child (at approximately age 6) and before the appeaxance of operations
{ege b=7), intuition is the main form of a child's thinking.' The child
does not. pogsess the operational schemata (chavacterized by composability
“and veversibility) which are the basic conditions for logical, anelytical
thinking, Consequently, the child thinks at this stage by restoring to
global, half-articulated configurations in which the direct, impressive
featurer have an essential role., At this stage, intuitions are not only
particular moments of the process of thinking, they are the process of
thinking itself, For that reason, Plaget terms that stage the "period of
intuitive thinking." : , :

. Though described by Piaget as being specific to the period of intuitive
thinking (4~7 years of age), all the features of intuitive thinking are,

in fact, comon to all of the various forms of intuitions which may be
encountered at all ame lovels.,

In other words, intelligence does not abandon Lts intuitive form

- when operations appear. Intuitive knowledge is not an immature, rransi-
tory form of thinking. Rather, when operational thought appears, intuition
continues to survive as a complamentary form of thinmking., At operational
lavels of thodght, intuition functions as an effective form of cognition,
better adapted to action than analytical discursive, time~consuming, logical
knowledge,

The above hypothesis has a direct, important. implication. If intuition
is a condensed, practically adapted versgion of some information, solution '
“or interpretation, then intuition also has something to do with previously
acquived experience. This does not exclude the possibility of a priori
schemata intervening in our vepresentations of facts, But it is natural
to assume that if inteitions prove themselves to be useful mental tools-
adapted to the particular requirements of certain clagses of situationg~~
then they must be the result (torally or partially) of pevrsonal practical

expecience,

I[ntuitions and Mental Skills

1E fatultions are the product of experience, then are they merely
well-established meatal habits?  Is there anything more {n an intuition
than in any well-gstructured, nmental system of skills?

Intuiiions cannot be reduced to mental habits. A habit is essentially
@ gtabllized wmanner of acting in response to a elass of sicuations, An
intudtion 1s primarily a cognition, i.e,, a subjective reflection--corvect
or not-~of some real facts.  The novelty of this kind of cognition is that
it is adapted, by its features, to the needs of action, Although intuition
is, geaerally, a derived fovm of cognition, like conceptual knowledge, . r
has the features of being immediste, innere-structured, sclf-cvident and
coercive~-all of which arve chavacterintics of percep don, Being like
poreeption, and as o requwlt of thedr common qualities, fntuitions have
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the role of preparing and guiding action. So, intuition ig generally shapec

by practice, in connection with a defined category of situations., But the
product of that experience is not merely a meptal--or pracetical-~habit, It

is, rather, an image, an interpretation, an gvgluation, which, by its intriusic
nature, can be directly and immediately trafslated into terms of adapted

reactions, (Recall that by the term action 1s meant both external and mental
forms of abtivity). ,

Let us take & few examples:

Consider the formula for solving quadratic equations. Knowing the for-
mula, possessing the corresponding skills for using it sutomatically, does
not generate any {ntuition, 50, intuition is not merely a well-established
mental habit.  In vther words, intuition is not reducible to an algorithm.
It must be something more,

4

For a different example, consider the formula for calculating the number
of permutafions of 0 elements, The forimula iz P(n) = n! With one-element,
taere is, of course, only one posgibility. With two elements there are two
possible permutations, This is intuitively evident. Now add a third element.
Each of the two previously obtained permutations AB and BA, will provide
three permutations because the third element, C, may occupy three different
places: ‘ :

CAB, ACB, ABC, CBA, BCA, BAC

The representation of how permutations can be built when adding more
and more elements is an intuitive representation, When adding a fourth
element, gach of the above obtained permutations will provide four permuta-
tions because there are four different places for introducing the fourth
element, :

Intuitive understanding is sufficient for reaching, by extrapoclation,
the geperal formula: P(n) = L+2+¢3.¢2n = n! 1Is this formula a mere algo-
rithm or does it express something more? After realising how the formula
was deduced, we reach a level and a kind of understarding which 1is beyond
the simple knowledge of a programme of action, The process of successively
multiplying by 2, by 3, by 4, etc. expresses directly the way of building
the permutations. The formula P(n) = 1+2++3+cehevopn containg in its specific
apparent structure its justification. When recal. ing the formula, one
recalls in a direct, global manner the basie idea of how permutations arve
produced as a function of the number of elements, and why they are preduced
in that manner, This is move than a mental skill, i.e., more than a simple
programme of action; it is grasping the meaning of a process with an extra~
polative perspective in mind, '

Briefly speaking, intuitions are mental structures based on previcusly
accumulated experience and expressed in an interpretative and predictive
form of knewledge. Therefore, intuitions are generally based on systems
of mental skills. But mental skills do not, by themselves, entirely explain

S
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the particular nature of intuitions. Accumulated expariance, in a given
field, must also be expressed in an interpretative and predictive global
view. Some kind of induction, largely performed unconsciously, is probably
the main source of that global representation. Intuitive acceptance involves
a feeling of obviousness which is the effect of congruence between justifi~-
cation of an interpretation and a programme of action,

~ Intuition and Images

A second aspect which has to be taken into account refers to the role
of images. Visual images (graphs, schemata) are often used to provide mathe-
matical statements with an intuitive dimension. However, an image is. not
an intuition by itself. 1In order to be an intuitive way of understanding,
the image has to be included in an active process, The role of the image-
intuition is therefore 1 double one: (1) to unify, or synthesize, informa-
tion and (2) tc prepare, guide, or anticipate action (on the basis of that
information). Therefore, a visual representation will be able to contribute
efficiently to an intuitive understanding of some mathematical truths if
ft can suggest the dynamics of the _corresponding intellectual process.

Return to the example of combinatorial procedures. Suppose we want to
use a tree diagram for solving a combinatorial problem--for instance: How |

many numbers of three figures could be obtained from two given figures:
!l and 27

The corresponding image is:

1
4\/ 2
2
R ‘ 1

2 ”’/fﬂfflqéz::::::z \
’ ‘“-2c::::f’“’"l

Now, the question is: Is that static image sufficient to elicit an
intuitive understanding of combinatorial procedures?

The question is trivial and the answer is evident. For a solid intuitive
underscanding, the pupils must participate in the building procesp, That is,
1f the tree diagram is included in a building process and if it symbolizes
a building process, then it will be interpreted as a programm2 of action, and
thus will gain intuitive efficiency,

Let us take a different example: an intritive concept of geometrical
locus, To teach such a concept, a teacher could present the pupils with
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an angle and its bisectrix, etc. These can be used as examples of the

- concept of a geometric locus, Moreover, they are represented by visual
images, However, such static images contribute little to .an intuitive
understanding of geometrical locus, They lack a constructive, dynamic
component, The circle, the bisector, etc., must emerge as a Gestalt from -

e e ]

the set of points which have been drawn by the child himself, in conformity

e — e ut———

to a given rule, - The formal proof comes afterwards, But the intuition-

of a specific geometrical, locus (and, by way of generalization, of the
concept of geometrical loci in gemeral) can be obtained only by joining,

in one single "wue d'esprit" the deductive and the constructive, the iconic
and the enactive aspects of the concept, '

some dréwinés: a circle, the perpendicular drawn on the middle of a segment,

The graph representing a function is not only an image, an iconic -
translation of a concept, it is also an essential conceptual aid due to its
intuitive features, It represents in a unique, condensed view, the dynamics
of a mathematical relation, It suggests not only a limited situation (for
instance, as-a result of the variation of X between a and b), but the
- txend of the whole. process.

Intuition and Experience

We thus come back to one of our basic assumptions: intuitions have to
play a constitutive role in an active demarche; but they can only be . elaborated
in the course of such an active approach; By way of merely formal, verbal '
explanations, it is possible to teach only a conceptual structure, Such a
structure may appear to be very convincing from a formal, logical point of
view ("I am now convinced that this must be so, because I do not find any
lacuna in your proof'"). But the learner may add: "In spite of this, I
do not feel completely comfortable with your statement."

In order to overcome such a conflict, i.e., in order to create a
genuine, intuitive acceptance of the statement, both the proof and the
statement must be given a behavioral dimension. Such a behavioral.dimension
can be created only if the student has the opportunity to be personally,
practically, and experientially involved in the process, ‘ ’

, Probability is an area in which students often lack a good intuitive
‘background. It is in this domain that the role of experience in creating
new, correct intuitions can best be shown.

For Piaget and Inhelder (1951, 1975), the concept of probability can be
understood by the child only at the formal operaticaal level, as a synthesis
between chance and deductive operations. 1In fact, that synthesis does not
generally occur spontaneously at the formal level. My explanation is that
current science education is almost completely oriented toward elaborating
deterministic forms of thinking and interpreting, Consequently, a lack of
equilibrium appears between the two components, As an effect of actual
school education, students will assimilate various mental skills and intuitive
forms of interpretation, helping them to cope successfully with deterministic
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situations, On the other hand, when facing (even very simple) problems
referring to random events, students will frequently give wrong solutions.
They are lacking not only the corresponding technical procedures, but first
- of all, basic, correct mental intuitions--what Freudenthal (in this same

: monograph) calls "mental objects,"

Let us take an example: In an attempt to teach twelve~-year-old pupils
the concept of probability, a teacher began with the concepts of possible,
certain, and impogsible events., Next, the teacher gave various examples of
certain events and chance events--using boxes containing colored marbles,

XY - white and red marbles. For example, from a box containing an equal
number of red and white marbles, the pupils had to draw a marble at each
trial (with replacement). The experiment was performed by a group of
5 pupils--each of them performing 20 trials. After a hundred trials, the
recoxrd was 47 reds and 53 whites. The teacher concluded: "As you can
see, the number of white and the number of red marbles drawn are very close
" (47-53). They both are close to 50, What do you think: Will we get similar
results when replicating that experience? 1In other words, if a different
group of pupils repeat the experience in the same conditions, will we again
. get an approximately equal number of white and red marbles?" The pupils
answer was negative: '"No, we cannot predict anything because the outdomes
are random.,'" What is lacking is exactly that synthesis between the possible
and the necessary which characterizes the scheme of probability., This is
not a matter of a computation procedure., This is a matter of '"mental
objects,”" The pupil is not yet prepared to overcome the contradiction
between these two opposed categories of events (certain and random) and to
understand the possible rationality, the possible predictability of mass
phenomena, 1In Piaget and Inhelder's view, probability is one operational
schemata which (together with the schemata of combinatorics, proportion,
“etc,) characterizes the formaloperational period

I do not exclude the possibility of describing the concept of probability
as an operational schema. I submit, however, that the-capacity to understand
probability and to correctly use probabilistic procedures requires some
specific intuitions. The basic intuition is that of the possible regularity
of <hange events when considering them as maﬂs\phenomena.

Let us return to the basic hypothesis; Intuitions are shaped by direct
involvement in a practical experience. To create probabilistic intuitions
in pupils, there is no other way than by helping them experience probability,
For instance, if children, organized in groups, perform the same random
experience i similar conditions, they would realize that, while the single
.outcome of each trial is unpredictable, sets of outcomes follow some regularity.
As the number of trials increases, the outcomes tend to distribute themselves
according to certain predictable proportions,

In a recent experiment (Fischbein, 1975), subjects were asked to deter~
mine the probability of getting the pair 5-6 when throwing a pair of dice.
The pupils (grades 6, 8, and 10M (classeg of mathematics)) had been pre-
viously taught the multiplication rule for probabilities, They knew, for

s
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instance, that P(6,6) = 1/6 x 1/6. The subjects did not see any difference
between the probability of getting a pair of equal nuabers (for instance:
6,6) and the probability of getting a pair of numbers whith were different
(for instance: 6,5). Twenty subjects were examinved at each level. The
frequencies of correct answers, according to grade, were as follows: grade 6:1y
‘ grade 8: 2; grade 10: 4; grade 10M 3. We concluded that generally subjects do not
possess natural intuitions for estimating compound events.. Furthermore, in
order to create such support, a verbal explanation and lists of possible ‘'
outcomes are not sufficient. The subject must participate in the random
experiment . He must see, for instance, that the relative frequencies of

pairs of equal numbers are in fact smaller, as compared with the relative
frequencies of pairs of non-equal numbers. Some subjects can perform

such an experiment mentally, but this is usually not the case. Moreover, as \
a result of participating in real experiments, subjects vsually improve their
capacity for conducting such mental experiments.

This problem involves the follbwing aspects ,
(2) the training of a general capacity to perform méntal experiments"
" by usiug conceptually controlled images;

(b) the training of subjects in a certain domain. They get used to
that domain, to its specific objects, properties, and phenomena
and can then méntally perform the required manipulations.

(¢) the role of age. We can suppose that formal operational subjects
: are better adapted in conducting mental experiments than younger .
subjects,. provided that they have received previous practical
training in the respective area.
. . . .
The main point is that intuitions can be elaborated (or corrected) only
as a result of personal involvement in a practical experimental activity.
An intuition is not a 'passive copy (iconic or symbolic) of a given reality.
An intuition is always a construct, an interpretation, a presumptive expla-.’
nation, a guessed solution. An intuition is nQt a perception and not a
simple substitute for a perception-like elementary mental image. "An intuition
is a theory presented in a perceptual-like manner; it is characterized by .
globality and practical eflectiveness. Such a symbiosis between a theoretical
model (with its capacity for interpreting, explaining, and predicting) and
perceptual qualities (globality, obviousness, imperativeness, effectiveness)
can only be created in a practical, experimental activity. Such an activity
requires moments of thoughtful guessing, of assimilating and coordinating
information, and of formulating plausible predictions. The result is a .
mental structure having both the qualities of a theory and the qualities of
a perception. Like a theory, it is an explanatory or predictive device
which is able to connect in one structure the variety of facts gathered;
and, like a perception, the same conclusive construct will possess the
qualities of a perceptunal representation (as a result of the pragmatic
character of activity itself).
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\ . Including the student in a process of inquiry in order to create intu-~
itions perfectly suits the teaching of probabilities, especially at initial,

. introductory levels. Thus, the problem in teaching probabilities is primarily
the problem of forming an adequate intuitive background. The:formulas ised
for solving probability problems have a relatively simple algorithmic
structure. However, even simple probability problems require specially
adapted intuitions which are generally absent if the student hds not
received special training. This is not the case with elementary geometry
Jhere most of the concepts and operations have a natural intuitive cor= K
respondent. '

In order to develop adequate probabilistic intuitions, there are a
variety of experimental situations: throwing dice, tossing coins, extracting
marbles, playing roulettes, etc. All these activities can be performed in
a practical, experimental way. The pupil has' to analyze a given situation,

‘make predictions, organize .an adequate experiment, watch, record and classify
outcomes, compare results with predictions, etc. Various types of distribu~
tions (binominal, normal, etc.) receive an intuitive backing by effectively
performing the related experiments (and not Just seeing the graphs of the
corra sponding functions).

Is the Intuitive Acceptancé df Mathematical Statements
NeceesarY”for Mathematical Education?

lntuitive modes of representation and identification range over 'a wide
spectrum of apparently very different mental structures. At one end are
the most elementary forms of intuitive knowledge, almost reduceable to per=
ception itself: the estimation and decision-making sensory-motor structures,
like those which are expressed in gpace and time evaluations. At the other
end ‘are the complex, sophisticated intuitions of scientists and mathema-
ticians which are almost ready to be translated into fully formalized analyti-
cal presentations. BRetween these two extremes lie a large variety of
intuitive representations, interpretations, explanations, more or less
connected with figural models and verbal forms of expreSSion. They all
gshare the same basic features: they all synthesize a large amount of
personal experience on a global, self~evident extrapolativp vision,

A beautiful exawmple is that of the discovery by baiileo of the law of
inertia described by Wertheimer (1945). An outline of the story follows:

The following statement seems to be commonesense:

"A moving body sooner or later comes to a sténdstill if the force
which is pushing it no longer acts. ILsn't that tyue? It is
obvious." (Wertheimer, 1945, p. 161)

The preceding situétion involves an elewmentary intuition. It is based
on all our experiences concerning moving bodies. It is a theory: it is a
X general, extrapolative interpretation of a class of facts. We feel entitled
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to say that it will alvays be so. The theoretical justification may sound

as follows: wmovement.always consumes energy. On the other hand, that

theory appears to be==in the common-sense form-<a global, completely trustful
view.; I can safely predict\that, after throwing a body under any possible
circumstances, the body will ‘stop moving soomer or later, provided nothing’
else intervenes. I know it, feel I am completely sure of it, I do not

need any further explanation. WYt is so. It is an intuition.

At the other end of the spectrum are Galileo's intuitions about motion.
He carried out a series of experimepts with free-falling bodies and with
rolling balls on inclined surfaces.\ He stated that acceleration decreases
consistently with the angle of inclination. Wertheimer continues°
Then suddenly he asked himself: '"Is this not just half the picture?
- Is not what happens when one throws, a body upward when one pushes a
sphere in the uphill direction, the \symmetrical other part of the
picture which repeats like, a reflection in a8 mirror, what we already
have and which completes the picture?"

When a body is thrown up, we have not -positive but negative accelera-
tion'....But does this complete the picture? No. There is a gap.
What happens when the plane is horizomtal, when the angle is zero

and the body is in motion? (p. 161)

- The logical conclusion is: 1if the acceleration is zero, there are no

. changes in velocity. The ball will continue to move constantly if no external
force intervenes: "A body moving at constant velocity will never come to
rest if no external hindrances are at work...." (p. 49) :

"What an amazing conclusion'" writes Wertheimer, "apparently contra-
dicting all familiar experience, yet required by the constancy of the
structure' (p. 164). As a result there i3 another theory-=this time one
based on a logical analysis-~which contradicts the first, though it was
deeply rooted in our life experience. Can such a theory be transformed into
an intuitive #cceptance (i.e., as a self=-evident' truth)? And, is. it~
necessary that such a logically based theory sflould be associated with an
intuitive feeling of obviousness, of direct credibility? Our answer to the
second -question is: Yes, particularly if it must be opposed to a different,
incorrect intuition. Why?  Simply because for non~standard questions, there
is a high probability that the student will answer according to his intuition

and not the learned conceptual framework.

Laurence Viennot (1978), a Irench physicist, presented the following
problem to high school and university students. Figure 1l represents a set
of balls which are being juggled by a juggler. The images of the balls are
frozen at a certain moment of their flight. All the balls are supposed to
be in the position, but have different speeds and directions of motion as
indicated in the figure. The question is asked whether the forces acting
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~on all the balls (or masses) are identical at the instant shown (air resistance
considered negligible). The correct answer is that the forces are equal. The:
only forées which have to be taken into account here are the weights of the
bodies. The bodies being identical and at the same heights, the forces are
equal. However, most subjects consider the forces to be different. (For -
instance from 49 students in physics in the third year of University, 37%

> have affirmed that the fotces are equal, 55% that the forces are different,and
8% did not reply). Analyzing the subjects’ explanations it becomes ‘clear that
the students' who thought that the forces were different were using the fol~- -
lowing (intuitive, non~explicit)vinterpretation° a ball which has been launched -
upright keeps rising because it has been givenan impulse and that impulse has

~ not yet been used up. Consequently the bodies=-~though being at the same

" distance from the earth-~but having previously covered different distances in
their motion, are possessing different "capitals of forces' (a student's
formulation quoted by L. Viennot) (Viennot, 1978, p. 19).

Intuitions are often very coercive and persistent. Consequently, wrong
‘intuitions may have a misleading influence even in persons possessing a good
A theoretical preparation in a field. This phenomenon is. well known in prob-
G . ability. Furthermore, such misunderstandings angd errors may be found in
- other branches of mathematics as well,
Consider the following example. '"C is an arbitrary point somewhere on
gsegment AB. We divide and subdivide segment AB by two, by four, etc. indefi-
-nitely. Will we drrive at a situation such that one of the points of
division will coin&ide with point C?" The question was put to junior high
school pupils (grades 5 to 9) and, in a non-formal manner, to university
students (in mathematics). About 80% at all grade levels (including university
students) answered that as the process of division is not limited, the point C
will coincide-=sooner or later~-with one of the points of division. In grade
five, 81.2% and in grade uine, 88.1% answered that way. Yet, in grades 8 and
9 (and in some cases even before) the pupils have learned about rational and
irrational numbers  (Fischbein et al., in press).

Our main explanation of these vesults is that, intuitivély, infinity
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is equivalent to non-exhaustible. For intuition, the various "degrees" of
infinity do not exist. Consequently, as an effect of the non-limited

process of division, each of the points of the segment may be reached, sooner
or later. Although the grade 8 and 9 pupils possessed the conceptual _
prerequisities for a correct answer (for instance that the possiblé coin=-

.. cidence depends on the position of C), they generally gave a wrong answer

fbllowing their 1ntuirive bias.

The problem is not only to avoid the negative effect of some immature
or false intuitions. Correct ;ntuitivgfregresentapﬁgps, interpretations oxr
explanations represent essential prerequisities for ma mathematical th thinking 4
and for scientific thinkgvg_in general Michael Pollany expressed this as
following, ‘ ;

...We can understand mathematics only by our tacit contribution to
its formalism. I.have shown how all the proofs and theorems of
mathematics have been originally discovered by relying on their
intuitive anticipation; how the established results of such dis-
coveries are properly taught, understood, remembered in the form

of their.intuitively grasped outline; how these results are s

effectively reapplied and developed furthersby pondering their

intuitive content; and-they can therefore gain our legitimate assent
only in terms of our intuitive approval. I have indeed shown that
all articulation depends on a tacit compohent of the same kind for
conveying a meaning accredited by the person uttering it.

(M. Polany, 1958, p. 188)

In fact--as has been frequently %epeated--we must distinguish between
the axiomatic form of a constituted branch of mathematics and mathematical
thinking as a productive process. Mathematical thinking is a constructive
activityyduring which we try, we combine, we guess, we formulate assumptions,
we check, we extrapolate, and we make large mental jumps. Mathematical
activity possesses all these qualities which are shared by every adaptive
intelligent activity. Therefore, if we admit that intuitions are a sine-
qua=non component of intelligent behavior, we must also admit that mathematical
thinking normally includes intuitive ways of 1doking for, of trying, of
checking, and of representing.

If we refer to anticipatory intuitions, things look rather trivial.
Everybody agrees that while striving to solve a mathematical problem the
full solution is generally anticipated by a global view of it.. However, .
it is less evident that an intuitive understanding, an intuitive version
of mathematical truth, is generally no less important for mathematical
activity than intuitive anticipations are.

Productive mathematical thinking necessarily includes~-as an active
component-~intuitive forms of acceptance, representation,and proof. The
crucial point here is not to replace the formal structure by intuitions but,
rather to inject it (the formal structure) with the specific dynamics
of human thinking. In other words, while mathematical truth is guaranteed
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by- logical échemes, the érogress of mathematical thinking is stimulatod and
guaranteed by its various possible intuitive models and representations.
Recall the definition of continuity of a function £:E-R in a given point
%o of E. ' '

A function £:E-R is gontinuoﬁa\at a point Xp of E if, for every
neighborhood U of £(Xo), there is a neighborhood V of x, such that for any
X&V, we shall have fgx)'e U, . .

There is here a string of concepts the meaning of which is ;;E\gasily
grasped. Presumably, edch of the concepts has been previously clearly
defined and the student kpows these definitions. But it seems to be a .
difficult task to ¢oordinate them in a unitary, purely logical meaning. \

. ’ . . N\

In & more primitive intuitive interpretation, the same idea could be
expressed as follows: A function f:E-»R is continuous in a point Xo of
E 1f, for values of very close toxpowe could £ind values of f(x ) which shoul
be as close as we want to £(%X,). That is, we should be able to approach the
£f(Xo) value as much as we want, by £(x) values. The primitive idea is that
of points which may be considered=-or note-~as constituting an intuitively
(visually) continuous line. ‘

Such primitive interpretations of centinuity may be dangerous, because
they might distort mathematical thinking. Illegitimate extrapolations may
be made if intuitions are permitted to invade mathematical activities. On
the other hand, full trust on intuitions will sharply limit the freedom of
creac}ve mathematical thinking. . ) ..

From such considerations should we conclude that the intuitive inter-
pretations must be banished systematically from mathematical thinking?
Surely not, for the simple reason that without intuitions we cannot think
productively. Pavlov is reputed to have sald: '"Facts are the air of the
scientist.”" But there are not only physical, material "facts." When -
thinking credtively we are necessarily using "mental facts," "mental
objects." 1Intuitive representations are the most stimulating category of
such mental facts. An intuitive interpretatich has the capacity to
inspire, to guide, to elicit,and even--sometimes--to check productive
adaptive activity. The superiority (and the danger) of intuitions is that
they do not offer a merely phenomenal information. An intuition is a ‘>
theory, expressed in an elaborated and condensed cognitive structure and
- based on previously lived, personal, more or less gemeralized experience.

The intuition of continuity is not merely the image of a continuous
line. Some implicit affirmations are contained in that intuition. We may
try to make some of them explicit, i.e., there are no holes, no inter=-
ruptions, no "absences" in the "object" which is considered to be contin-
uous. This also implies the idea of infinite divisibility of that contin-
uous object and the- idea that every part of it is connected to other parts
of it, etc. All these ideas appear rather confused when we try system-
atically to derive them from the primitive intuition of continuity,
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Our intention should not be to make an inventory of such confused implica~
tions. We wish only to demonstrate that even this rather rough represen-
tatfon of ¢ontinuity is mot reducible to a pure image: it ig a theory (or
a cluster of non~explicit theories)., Its specificity with regard to a
formalized theory is its "compactness," its rather perceptudl mode of
manifestation. .

While thinking about continuity, we usually join to the formal
definition some compact, global representation of it, which must not
necessarily be that of the beginner. It may be more defined, an improved
version which fits the conceptual prescriptions of the mathematical
definition better (this is a "secoundary intuition").

. The specificity of an intuitive representation does not lie in its
primitiveness or roughness. The specificity of an intuition is defined by
its globality and immediacy. Corresponding to the various levels of
mathematical abstraction there may be various modes of intuitive inter=
pretations of the same concept. In such a global, self-evident representa~
tion there are usually mixed images-and verbally expressed interpretations.
Beyond all these, there is a key unifying meaning, inspiring, directing,
stimulating and controlling the mental constructive process.

Poincaré wrote:

Prenons, par exemple, 1! idée de fonction continue. Ce n'est d'abord
qu'une image sensible, un trait tracé a la craie sur le tableau noir.
Peu 4 peu elle g epure ou s'en sert pour construire un systeme °
compliqué d'inégalités, qui reprodu&t toutes les lignes de l’image
primitive; quand tout a été terminé, on a decintre comme apres la ARSI
construction d'une voute cette representation grossiere _appui '
desormais inutile, a4 disparu et 1l n'est resté 'que 1' edifice lui
meme, irreprochable aux yeux du logicien. Et pourtant, si le
professeur ne rappelait 1'imate primitive, s'il ne retablissait
momentanement le cintre, comment l'eleve devinerait 11 par quel
caprice toutes ces 4négalités se sont echafyaudees de cette fapon
les unes sur les autres? (Poincare, 1913, p. 134)

A mathematically formalized truth would appear as a strange, arbitrary
combination of statements without a basic intuitive representaticn serving
ag justification for unifying the steotements in that manner and not in .
another. .

What is said with regard to the learner is equally trua foxr the ﬂreative
mathematician:

Pour le géometre pur lui méme, cette faculté est necesgsalre, c¢'est
par ia logique qu'on démontre, c'est par 1'intaition qu'on invente.
Savoir critiquer st bon, savoir créer est mieux. Vous savez
reconnaitre si une comninaison est correcte; la belle affaire si
vous ne passedez pas/l'art de choisir entre toute les combinaisons
possibles. (Poincare, 1914, p. 137) o

I~
O
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We are acting mentally on intuitions with intuthtnna acaﬁvdiug F@ the
geﬂﬁ#ﬂ% Jogical ~ules. Lakatos weoue:

uwm this bleak alternstive between rhe retionalism of a machine and
fhe krrationaiiss of blind guess does not & 'd for live mathematics: , ;
a#n dnvestigavion of informal wathematics wiii yleld & rich aitua~ SR

tional legte which 13 neither mechanicel nor tr:atioualcmaa
(hakatos, 1983, . 19}

ki

coodnformal, quasi-empivical machematicy does not grow through a ST e
monotenous increase of -the number of indubitably established theorems
bot Chrough the {ncessatk fuprovement of guesses by speculstion and

eriticism, by the logic of proofs and refutatioms. (Lakatos, 1969
g &1} ’

EREe

oHone of the “eveative” peeléds and hardly sny of the "ericical®
pariods of mithematical theories would be admitted iato the Formalist
hoaven, where mathematicsl theories dwell 1ike the seraphiim, purged
of all the ispurities of "earchly uncertainty™....0n those terms o
Hevton had to wait four centuries ontil Pesno, Russell and Quine helped
Bim into heaven by formalizing the caleoulus. (Lakatos, 1969, p. 3)

Bavid Hiibery adds:

Who does ot always use, slong with the double ineguality a» b» ¢,

the picture of thiree points following one another on a straight line
a8 the georetrical plcture of the idea "between'? Who does not make
use of drewings of segments and rectangles enclosed in one another
when it 48 requived te prove with perfect vigour a difficult theorem
on the continuity of functions or the ex..tence of points of condensa-
tion? Who could dispense with the figure of the triangle, the circle
with its center ov with the cross of the three perpendicular axes?

Or would give v, the representation of the vector field or the picture
of o family curves or surfaces with 1its envelope which plays so impore
tant 4 part in differential geometry, in the theory of differential
equations, in the foundations of the caledus of variation and in
othey purely mathematical sciences?

The arithemctical symbels dre written figures and the geowetrical
Pigures ave deawn formulas. (Cf. Reldd, 1970, p. 79)

L&, at the begluning of the above quotation, we would seppore that, for
Hilbert, these imapes have ouly o maemonie role, the last statement casts
a difterens lipht on his grandpeint: "the geometrical figures are drawn
formulas,” as he sadd. They are symbols of concepts or af meatal operations.
In taecr, they are wore than simple, pure conventional signs: they have a
key role in sugpesting, orienting, orgaviziug, and prompting our ideas
ad o creating a feeling of «ompac wmeaningiviness, of fnner eructurality
oi the corvecponding nental facv.,
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These intuitive representations are not heterogeneotin to mathematical,
thinking: they are ~ necessary part of its dynamics. The condition is that
these iconic symbols should be controlled by the corresponding formal
structure ., The use of geometrical symbols as a weans of striet proof pree
suyposes tha mxnut knowledge and the complete mastery of the axioms which
lie at the foundation of thesc figures; and, in order that these functional
figures may be incorporated [n the general treasure of mathematical -
symhols, a vigorous axiomatic investigation of thelr conceptual content is
necessary .

According to Hilbert, the founder of modutn axfomatics, the living

* yrocess of mathematical thinking miat not and cannot be “purged” ol intuitive

representations. Consequentiy, the great problem of mathematical education .

is not how to avoid the interferente of intuition in the flow of mathe
matical thinking. 8Such an avoidance is not a realistic enterprise. Rather.
the problem is how to control, conceptually, intuitions without stifling them.
If good intuitions are lacking we have to build them. - If wrong intuitions
ar present, we have to eliminate them. If vague or distorted intuitions

are present, we have to correct them, to clarify them and to include’ them

into a comceptuilly controlled process.

There are various ways for improving and enriching the intuitive side
of & concept or a statement. Sowme of them can be deduced from the former
examples. 1 would like to emphasize only one aspect which seems to me of
high didactical value. 1 am referring to the act of elaborating a conceptual,
vigorous structure (for instance, a definition) corresponding to some
intuitively known property or operation. This is what creative mathemae
ticians are usually doing, but it is very seldom that pupils are also asked
to do by themselves. The new concept must nct be built aside from the
primitive representation, buat in connection with it, in a dialectical dialogue
with it. The new concept should inherit the inner structurality, the meaning-
tulness, the quality of objectual compactness, expressed by the original

Cintuition. On the other hand, the intuitive representation itself will

gain in clarity and in precislon in communicability.

Let us come back to the problem of continuwity. We know intuitively
what continuity means. For instance, we can driw a continuous line on a
sheet of paper. Let us imagine that the line 1: the graph of a function.
We would like to make explicit what we mean by :ontinuity. Let us try to
express the fermal condition defining completely and exactly, without any
ambiguity, what 4 continuous graph means and counsequently what a continuous
function means. Thiz is made step by step. I ciscover that the first
problem is to define the continuity in a given p iat. For the primitive
intuition this is a new problem because continuit;, iy bagically counceted
with a structural, Gestalt, representation. In ord v to formulate the idea
of continuity 1 have, first of all, to destroy conti, ity itself, to swash
it inte infinitesimal ftragments. The question ends up worded as follows: Ig
it possible that for values of X cloge enough to Xp, to tind values of
£(% ) which should be as close as we want to £(X,)? At the next step, I
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return to the fuucmion as 2 whole by generalizing the definition of continu-
ity in a particular point. This overall approgch is probably very coumon.
Hrat, the analysis of the concept in referenceé to the particular paracige
or element of the set is considered. Second, an exact deseription of the
properties ia obtained. Third, the set ag a whole is reconsidered, ete.

What follows from such & constructive process is theé inclunion of the
wrimitive Intuition in a rigorous sonceptual framework. But the intuﬂfion
itself is no longer what it has been. The iituition has been re~builg
anQ tronsformed into a quasi~new mental structvre in which some echoes of
the previous idees of continuity have been preserved but in which th
casential is reptesented by the mathematical structure itself, seen js a
whole. .

What is important here, for building or rebuillding am intuition, ‘is
primarily the constructive process. For reaching an intuitive acceptance
of a mathematical statement (definition, theorem, formula) that statement ..
must be elaborated by the learner himself as & result of a personalo-eveqx
original--search effort. The didactic utility of such an active approach' is
well~known and it sounds rather like a trivial request.. What has not been
said explicitly is that this requirement refers not to thé conceptual
structure but to the intuitive component of the understanding process.

Furthermore, the personal involvement of the learner in that constructive
process is especially necessary when the respective truth has something to
do with an existing, formerly acquired, and stabilized intuition. A new
intuition contradicting an old one, or representing an improved version of
an old one, cannot be elaborated without taking into account the priwmary
intuition.

Sometimes we arrive at a gonflictual situation. For instance, we :
.present a twelve year old child with two segments AB and CD, CD> AB., "How
many points are there in the segment AB?" "An infinity of points." 'Can
we put the points ot AB and the points of CD into one=to-one torrespondence”"
"No." "Why?" "Because the segment CD contains more points." "You said
thét wn both there is an infinity of points." “N'W¢s, but CD is longer. The
inixnity of CD is greater than the infinity of AC."

Must we avoid such conflictual situations? Surely not. On the cone-
trary, such conflicts must be experienced by the learner himself in order
to overcoine them.

Let us quote gsome more answers to a questionnaire referring to the
concept of infinity (Pupils grade 19).

"Thei. are more point: in a square than in a segument. (I am answering
according to my feeling and not to what I have learned)."

"fhere will be no correspondence between the natural numbers and the
po:nts of a liae, because the points of a line have no beginning and the
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natural numbers begin with the number 1.”

"fhere is no correspondence between the. natural numbers end the
positive even numbex: , - despite that both sets are infinite, - bccause the
ratio between them is 1:2."

it 18 clear that the students use theilxr "finitiste" schemas, based on
‘deeply rooted lntuitions ("the whole 18 greater than its parts",etc.) in
interpreting relations between infinite sets. -What is surprising, and very
interesting from & psychological standpoint, is that the students accept
& their own contradictory -affirmations without protesting and without looking
' "~ for & solution. Very probably, they get accustomed during their school

years to tacitly accepted interpretations and affirmations which contradict
'’ each_other.

The example below {llustratis a mixture of contradictory intuitions.

The points of & segment and the points of a line can be put into one~
to=one correspondence "because a point 1is a concept.which cannot be concretized,
that is why we can always find a smaller point and, on a given line, we can
make more points.”" 8o, in the pupils mind a point is smmultaneously a
concept and an object with a variable area.

_both from a psychological and a didactical point of view--that, for the
intuitionist doctrine in mathematics, an intuition is equivalent to the
result of a constructive mental process. An idea 1s intuitively clear, it
is. intuitively acceptable, only if it can be effectively constructed by a
mental process. In Heyting's words:

But, returning to the constructive process, it seems interestingee~ !
{
|
l

Intuitionist mathematics consists of mental constructions, a mathe~

matical theorem expresses a purely empirical fact namely the success

of a certain mental construction. Thus, '"242 = 341" means I have

effected the mental constructions indicated by (2+2) and by (3+41) and

I have found they lead to the same result. (Wilder, 1965, p. 247-248)

N

I do not intend to discuss the role of intuitionism in the history
of mathematics, or its validity as a mathematical conception. But I am
convinced that an analysis of the Intuitionist approach may be very
suggestive in the didactics of mathematics. Thiis is not to claim that only
those concepts wh .ch express a constructive process are mathematically
valid. But I must take into account the fact that only those concepts and
statements which the learner has attained by his own mental constructive
processes have for him an intuitive validitw.

A difficult problem is that of mathematical concepts which do not have
a constructive nature, such as, for instance, the concept of actual infinity.
Such situations generate mental conflicts, hard to overcome. But in such
situations, too, didactical means should be invented in order to overcome
the difficulty and to attain an intultive acceptance,




Raiad Al TR T R R RS

54

Fischbein
References

Ewing,i . Reason and intuition. Proceedings of the British Academy,
1941 27, 67 107,

Fisqhbein,_E. The intuitive sources of_probabilistic thinking in
children. Dordrecht-Boston: Reidel Publishing Company, 1975

Fischbein, E., Tirosh, D., & Hess, P. The intuition of infinity. Educa-
tional Studies in Mathematics (Vel. 10), in press. .

_ Lakntos, J. Proofs. and fefutations | The British Journal of the
Philosophy of Science 1963, 14(5) 1.26.

" McNemar, Q. Psychological statistics (hth ed ). New York: John
Wiley, 1969, ;

Piaget, J. 8ix etudes de psychologie. Paris: Editions Gontier, 1964.

Piaget, J. Psychologie de l’intelfigencef Paris: Alcan, 1967.

~ Piaget, J., & Inhelder, B. La genese de 1'idee de hasard chez 1'enfant.
- .Para:: Presses Universitaires de France, 1951.
Plaget, J., & Inhelder, B. The origin of the idea of chance in
children (I.. Leake, P. Burrell & H., D. Fishbein, Trans.). New York:
Noxrton, 1975.

Poincaré, H. Science et Methode. Paris: Flamarion, 1914,

\

Pollany, M. Personal kuowledge. Chicago: The University of Chicago
Press, 1958, v .

Reid, C. Hilbert. Heidelberg: Springer, 1970.

Viennot, L. Le raisonnement spontane en dynaﬁique elementaire.
Revue Francaise de Pedagogie, 1978, 45.

Wertheimer, M. Productive thinking. New York: Harpér and Brothers,
1945,

Wilder, L. R. Introduction to the foundations of mathematics.
New York: John Wiley, 1965.

Westcott, M. R. Toward a contemporary psvchology of intuition. New
York: Holt, Rinehart and Winston, Inc., 1968.




LEARNING PROCESSES

. ' ‘Hans Freudenthal
" . o _ . . Netherlands

The Non-Psycholpgist View .

When I accepted the invitation to present a paper at this conference,
I asked: 1Is it a psychology meeting or an education meeting? I had a
good reason ‘to ask this question because I am not a psyéholpgist»-naﬁ even
. an"eduvcational psychologist. Occasionally, I have thought of myself as
an educator but perhaps even thig was a‘misconception. I am a school~
master and, I feel obliged to add, a bad one. :

¢~ .1 like teaching, and like every géhoolmaster;“t“aM"pfbﬁd if my pupils 1T "

learn vhat:I try to teach. There is only one thing to be even more proud
of, that is, the privilege (if it happens) to observe a learning process

~..

started by one's mere presence rather than by one's teaching. Good teachers

- need not think about their teaching, or about that of others, though of
“course they are allowed to do so. I started thinking about teaching in
‘order to improve it, first my own and later on that of others, in particular
of learners” of teaching. o ' :

To help explain my biases about the situations that I will describe
in this paper, there are several reasons for emphasizing that I am not a
- psychologist. First, I never succeeded in understanding pure theory, or
in bridging such enormous gaps between psychological-theory and experiment
as I noticed, say, in Piaget's work, which othetr people~=psychologistge=
apparently have not the slightest difficulty to cross.

- Second, I would not be able to create the psychologist's laboratory
sphere, or to converse with children like psychologists are able to do. I
am sure that at my first question children would ask me "What do you mean?"
It is a riddle to me~~and a matter of admiration==how, say, Piaget and his
collaborators managed to interview thousands of subjects without ever '
being asked this question, not even by subjects who obvicusly did not under-
stand anything. S

N
Third, I would not be able to have subjects fill out test sheets or
react on test questions or be interviewed, without discussing with them
their. responses. I would want to teach them what is right or wrong and to
guide them the right way. It is my feeling that keeping aloof means playing
a game against the child. Moreover, I am not interested in what a child
or an adult can do at a particular moment but what they can Jearn.

Finally, I am unwilling to speak about "subjects'" when I mean
children or adults I worked with.

An Example Involving a Non-Mathematical Concept

One of the children who taught me a great deal about mathematics
learning is a boy Baszty an, born 27 April 1970. Most of my diary (Note 1)
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on Bastiaan reflects casudl observations on his development made during
walks with him from the age of two onwards. It was he who .spoiled me and
who made me suspicious about children who do not dare ask questions., I
always addressed him in adult language, but he never accepted any word
that he did not understand. He was patient enough to ask questions as
many times as he needed, hut he did not show the same patience when cone
versely I did not understand him.

When Bastiaan did not understand me, he asked: '"What do”you say,
Grandpa?" . (This is translated from Dutch; properly used, by adults, it
means, "I beg your pardon?'") He used this formula up to 15 February 1975.
On this day, for the first time, he did not use his ola formula, but »
instead asked for the meaning of a particular word I had used. From this
day onward$--he was about 4;10-whe always asked for the meaning of a word
"if there was something he did not understand he never switched back to
his old formula. '

. This story is an example of what I call observing learning processes.
It is observing jumps, discontinuities. It is my belief that learning
proceeds by jumps and that, in learning, the only thing you can reliably
observe are jumps. With small children these observations are particu~
larly easy, because such discontinuities are often accentuated by an
emotional outburst. .

The event of 15 February 1975 was an important discontinuity in that
particular child's learning 1ife. But, why did it happen just at this
moment , and what did it mean in a larger context?

On 7 January 1975 something happened which was related to the event
of 15 February 1975. At that time Bastisan read most of the capital
letters, and~~globally--quite a few words. He also knew that printed words
are composed of letters but he could not yet read by building words from
letters. While walking, we came across a parked car of the State Police
with the inscription "Rijk  nolitie.”" He knew the car and the inscription.
I asked him "read this," and he "read" the word while moving his forefinger
from the right to the left. I told him that words are read from the left
to the right. He asked me, "And if you read it that way?" 'Then it is
Eitilopskjir," I answered. He enjoyed this joke and gave me many more
words to be pronounced backwards.

The "backwards reading' event seemed related to what happened on
15 February 1975. I cannot ascertain how long before 15 Februa:y 1975
Bastiaan knew what words were; long before this date he had asked for
meanings of words. However, on 15 February, he discovered a new function
of wo:ds. Words are parts of speech, and if you do not understand some
utterance, the reason may be that some word is unknown. The remedy is to
ask what the word means. I do not know if he discovered this strategy at
that particular moment. But, at least as far as I know, at this particular
moment it happened for the first time that he singled out the word that
caused the lack of understanding and he asked for its meaning. And, this
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was the strategy he would adhere to in the sequel.

Before 15 February 1975, when he asked, '"What do you say, Grandpa, I -
used to produce another version of the same communication. I am pretty sure
I'never replied "Which.word didn't you understand?" It is strange that 1
did not ask this question because it has been my habit to elicit questions
from him by consciously inserting into my talk words I knew he did not know.
Was I myself unconscious o the strategy, in cases of non-understanding, of |

asking for the meaning of a word; or did I not grasp the importance of this- *

strategy or the importance of teaching it to others? Why was I relying on
alternative versions, when he did not understand, rather than asking the
one question, "Which word didn't you understand?" If I had done so only once,

T would. certainly have accelerated his learning procéss.. But, honestly,

should I have done so? -

’

" What general facts about learning can be drawn from thiS”particuiar

"learning event in a particular child's life? I do not believe in patterus

of development. The number of developments I have had the opportunity ¢
observe is not large, but it is large enough for me to be convinced tiat they .
usually are quite different from one another. Children are individuals, and’,
they are learning 4s individuals. Of course, there are collective learning
processes too--learning processes of classés, groups, communities, natiens.

However, c¢ollectives, too, differ from each other, as do their learaing co

processes.

Distinguishing stages and phases is a way to generalize. Making divisions
and subdivisions looks like science but history can teach you it is a foregone
period of science. It is a cheap pleasure, a diverrion from craviug for
more profound research. Moreover, it is wrong. For :xample, linguistic psyche
ology knows about three stages of expression: one-word sentences, two-word
sentences, and full-blown sentences. I believed this dogma until I observed
a girl who started with full sentences, first incomprehensible ones which
were gradually understood by her parents and her larger family, and finally,
from the age of three onwards by everybody. She never spoke one-or two-
word sentences except in cases where adults do so. When I told others about
this case, it appeared that it is not as exceptMonal as I had thought.

What can be learned from particular cases such as the one abo ~ or the
one involving Bastiaan? They can be used as paradigms. Analyzing one case
can provide a model for analyzing others. What is general about ‘learning
processes is problems rather than solutions. For example, une particular

case can lead to many questions such as the present one, about the varicus
communicative aspects of words.

Some readers may be disappointed by this discussion of one case of
learning~~particularly because the examples given so far have not concerned
mathematics. I must confess that many of my observations which have heen
most instructive to me have not concerned mathematics but rather, have
involved linguistic or general cognitive development. Nevertheless, from now
onwards, I will stick as close as I ¢in to mathematics.
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My nest story s aboul number. I do mot say; number concept. I
kuow "econcepts® is the fashion now««toachiug aunbér concepts rather than
numbar, spice concepis tather thaw geometvy, logical coneepts rather
than thinkingre-but I baliavo thaf theae Lyends are denrimaural to mathemaw

tiey Leachiu#.

When I discuss number, T mess the wey nushers and number are gequired
ag wental objects. %6 fe welleknown how thia works. ©hildren learn
connking the way they leayn to recite nursery vhymas apd to sipg little
songa~ealihough semorizing the number sequence in the dorvect order seems
te be 4 bit eore difficoly, paecly because for mumbers dbove 10 or 20,

reyulariticg become indreasingly complax . Mo vertheless, duripg the early

gtoges of counting, counting does not necesgerily mesn counting semething.
Toung children may ledarn to indicate swall numbers (represevnring, say, ,
their age) by lifting a complex of fingers. Howewver, the lesrniuy processes
Linking counting te cardival aumbew are tarya incogniﬁag Dlscoveries
gbout- lavariances mey play a pert in this developwent though the invariances
that seem most important ars not the kind goasiderad by the superfilcial
covgarvation experiments of psychologleta, Sugh pwychologfﬁal theorles
about how numbexr comes abour ate firmly conivedicted by the next story I

am geing to fell. : '

Bastiaan, at the age of 433, showed an wausual bshavior towards
number, Though he knew some numbﬂr words, he did not count; in splte of
all efforts of his moether to teach him the number zefuence, he did not |

updercake anything unless he were sure he wonld succesd 100%. Yet, withe
out counting he knew emall quantities, and was able to estimate resaunably
larger ones.

On 12 July 1974, I obsewved Bastisan throwing chree objects, one after
the other, into a ditch while mumbling: one, two, three. ‘'How many Aid
you throw into the water?” T asked him, and he answered "four."

On 16 July 1274, Bastiaon found & paper ‘vnake on the.street. T asked
him bow long 1t was and was astonished that he said "four meterwel
expected "that long.”” At the houredoor we met his mother and grandmother, to
whom 1 told the story. They, too, tvrisd to estimste the leagth. Measuring
1% with my extended arms I said: “Somewhat more than b metevs perhaps 6%."
Thew, Bastilaan: “Let us say seven.” '"Did he really understand what he
seemad to be suying?” I neted down in my diary.

On 13 August 1974, during dinner at Bastisan’s home, Basclasn was
gitting opposlite his younger slster at a rectangular tablee-nis fathey
opposite his mother, his grandfacher opposite his grandmother. Suddenly,
during the desseyt of red ouerants, Bastizan lifted hic spoon in the greatest
agitation and said: "So many we are.” ‘Indeed there were six currants on
the sporn. T ssked him, "Why?" and he answered, “1 see it s0," 4and then,
"two children, two adults, two grandpa and grandma." Posaibly the six
curranta on the spoon Formed the zame configurative of six a3 we occupied
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at the table, but this I could not‘sae.

Set theory prejudices would prescribe us to interpret the relation
made by Bastiaan bétween curvants and people as a one=-to~one mapping. It
was, however, more global, not atomized into elements but structured into
grouplngs--an isomorphism of two structures. It struck me that one of
these structures was "family." ' ' -

On 14 August 1974, in the Park, Bastiaan showed four snowberries on
his.hand: '"So many ve ‘are living at home."

4

Some time later~~I do not exactly know when-=he started: counttng

“On 9 September 1974, on the rim of the sandpit in the Park, Bastiaau
was bullding a long row of sandcookies with & mold he had found. It was
the first time he had made such a row of objects. He proceeded from the
left to the right. I counted whenever he made a new one. They were 18
when he himself started counting from the left: 1, 2,-3, 4, 5, 8. Then f
he said something like: '"I wanted it to be six." I showed him where the
next six finished, but his attention was distracted.

Later on we picked elderberries° He carried the bag and said, "gix
" pounds''-=geening to treat "six" as an indefinite number. I asked, "How
do you know?" 'My mother can weigh it." 'How?" 'Withabalance." 8o,
Bastiaan really did know that weights are definite numbers.
¥

On 15 September 1974, ‘Bastiaan found a hub cap of a Fiat. He said,

"I have already got one." "How many do you have now?" ™wo." ‘How many
do you need for a car?" "I do not know." "How many wheels does a car
have?" '"Four." "How many do you still need?" '"Four." '"No, how meny o

more should you find?" "Two." At the door he calls out to his father: Tk
"I must find two more, then I have four." _ | -

~On 16 Septémber 1974, Bastiaan grabbed four cookies to take home and

said, 'When the baby comes, I will take five."
N

On 18 September 1974, Bastiaan gathered chestnuts in the Park. With
five chestnuts in his hand, he first said 'five'" and then counted 1, 2,
3, 4, 5. Somewhat later he had three in his hand. I asked him whether I
should put them ih my pocket as I-had done with the others. He said:
"This must become four, there must be one more." He was mastering number
but, in general, he still refused to answer questions of "how many" or to
count. He counted spontaneously up to six, but I did not know how far he
knew the number sequence.

On 6 Octoher 1974, Bastiaan asked "How many is ever and ever six?"
He seemed to Le asking about repeated addition. I said, "6 and 6 is 12."
He asked, "Ouce more six." 1 said: 18. He said, "Once more six." 1 caid:
24,
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-On 3rd January 1975, I noted that during the prece. ng month the boy. had
mastered cardinal and ordinal number, though sometimes he got confused
above 8, He counted non-ordered sets systemaéically; he never counted
. the same object twice, and he rarely skipped one. He also counted: one
tree, two trees, three trees,.:.. He also counted mental sets, like
alrplanes he had gotten at the Institute. Nonetheless, he still did not
like counting.

. Later, Bastiaan asked: "If you make 12 and' O, how much is it?" My
answer: 'Do you mean if I put- it behind or if I add it?" (He meant the
{rst, which his mother had taught.him, but he said the second. He started
the talk in order to check whether his mother” had informed him correctly.)
t I told him that 0 is nothing and that if you add it, things do not change.
"Over there are zero cats, Can you see them?" "No." | .
On 27 January 1975, at a landing, Bastiaan reaped a lot of soybeans.
"How many did you reap?'" I asked. He ansdered' "100." I continue: ‘'What
is more, a hundred or a thousand?" He said' "A million." At this age
Bastiaan would count spontaneously up to 29. Yet, he enjoyed '"counting
houzes," that is, walking the streets and reading house numbers. He protested
against gaps and he understood the system of even and odd.

Later that same day, Bastiaan said: 'When I was 3, Monica was 1; when
I am 5, Monica will be 3," and so on with some errors at large numbers. I
asked him: '"And when vou were 22" He said: '"Monica was 0," and he himself
continwed: "And when I wa¢ 1, Monica was in Mom's belly."

On 31 March 1975, Bastiaan said: 'Today isthefirstof April." His
father said, "No, that is tomorrow." ~Bastlaan: 'Then it is 0 April today.”

Let us stop here. You can read in Bastiasan's experiments. on Archimedes’
principle (Freudenthal, 1977) how number became more and more objective and
developed as a tool to master phenomena. It started, firmly embadded in
the child's family life~~family and family development is the first structure
that is being modeled by number. Counting follows cardinal number; counting
invigible sets is a next step=-in "Mathematic® as an Educational Task'
(Freudenthal, 1973) 1 stressed the developmental importance of counting
invisible sets.

I never asked him questions about conservation. It seemed silly to do
so in feal contexts. Conservation, of whichaver magnitude, was never a
problem for Bastiaan (Freudenthel, 1977)--implicit knowledge on vconservation
was rather a source of discoveries to him. For example, at the age of 4;9,
Bastiaan conserved the conutant difference of two years between his age and
that of his sister.

I should add that, with any child I observed, I never met any who had
problems of conservation of the type that occur in psychological experiments.
1 conclude that such conservation difficulties are nothing but laboratory
artifacts.
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~ I camnot finish this section without telling an amusing story that
happened much later. ,

-
4

28 November 1975 (age 63;7): Walking in a forest, we saw at a distance
of about 100 meters away a group of girls pass on horseback. "How many
were they?" I ask. Monica answered immediately: "Seven." (This is her
favorite number, as Bastiaan's wag six.) Bastiaan estimates: "40." I say:
"o." He changes to "20." I say: "I think 15 to 20." He: "25.," I
explain him what '15 to 20" means and (as & joke) I continue: 'We can
simply count the footprints.”" He counts from 1 to 20 while stepping from
one footprint to a next. I object: 'A horse has four legs, doesn't it?"

e, with big jumps: "4, 8, 16, (hesitating) 20, 24 (hesitating) 27
(hesitating) 30, 34, (hesitating), 37, 40. It must be 40 horses." I:

"But this means there are 10.horses, since one horse has four 1egs 10
horses have 10 left .forelegs, 10 right forelegs (I am lifting my hands), which
"make already up for 20." He: "Thus 80; 20 hoxses have 80 leg* "

Examples Involving Geometry
On 13 October 1972 (age 2;5), Bastiaan had his first opportunity to see
the labor yards and rowing club (where we regularly came) from the other
side of the canal. He recognized dnd identified all details and he has a
good sense of orientation. Once, he wanted to-go the straight way to a
point that we had always visited by a roundabout walk.
’. On 6 December 1972, in the Park, I drew a circle around him with a
stick and told him he was locked in and could not ‘escape. file accepted it
Only after I had wiped out a little door did he step out.

13 January 1972: He drew a circle around himself in th2 snow and asked
me to do the same, and then to exchange circles--a funny plaw.

“8 April 1974: We were at a public ground, a square meadow, surrounded
. by a low fence=~he asks how a mowing~machine can move in. I ghow him a gap
in the fenceata rather large distance. 'This 1s not big enough," he says.
We check 1it; he is right, N

16 March 1975: Spontaneously, Bastiaan "measured" the width of a path
by steps. "This igs six further." I show him ho ' I can cross ‘the path in
one step. He remeasures the path with two steps and continues measuring

distance by pacing.

29 June 1975: Bastiaan and Monica were crossing a meadow, approaching
a door to the playground along a somewhat oblique line. We could not see
the door because it was hidden by the shrubs. So, Bastiaan went running
10~20 metersparallel to the fence of the playing ground, in order to look
straight to the door. He confirmed that the door was open. (See Figure 1
on the next page.)

13 July 1975: Bastiaan looks at a mole~hill and asks, "How big is a
mole?"” 1 show him with my hands the length of a mole. "No, I mean how
high,'" he .ys,
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playing ground door
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»
..
- ..

- Bastiaan

Figure 1. Our Path to the Piaygrqpnd\

21 July 1975: At my office, Bastiaan made a long tape full of numbers
on the adding machine. He stretches it on the floor of my room.. I ask
him how many steps it is. He steps along: 11 steps. He has another much
shorter tape that is at most three of his steps long. He adds the small
tape onto the end of the long one and now measures 17 steps. I do not
explain to him that it is impossible. He always counts the O-th step as
number 1. : - ' .

27 July 1975: On a bridge, I drew Bastiaan's attention to the crooked
mirror images of the horizontal and vertical parts of the bridge in the
water. I asked him for an explanation. First, he said he did not know,
and then he continued: '"Because the water is curved." '

2 August 1975 (5;3): We were taking a long walk, crossing the
Amsterdam=Rhine canal from one bridge to the nexte~about 2 km. At about
one third the distance between the bridges, I ask Bastiaan whether it was
half-way. He did not know the word "half," at least,not related to
distances, so I took 2 stick and broke it to show him what is a half. He
~ protested, showing me that one piece was a bit longer. I repeated my
- question about the bridges. He said it was not half-way, but indicated
the wrong part as longer. I tried to-continue discussing distances but he’
was not" interested. When we were half-way, he spontaneoukly said, ''Here
begins the middle." Apparently "middle" was the word he knew, rather than
"half." - ' :

24 October 1975: While walking, Bastiaan told me that he was preparing
to make a record changer, but he still needed a wooden slab. "A square?"
I asked him. '"No," he answered, !"like the front of a car,"--drawing a v
rectangle on the ground with his forefinger. (He is right, though no adult
would describe the front of a car as rectangular.) I said, "A tile ig
a square. What are two tiles together?" '"A rectangle." '"Three tiles?"
"A rectangle." "Four tiles?" "A square,"

31 October 1975: Bastiaan was playing with two irregular pieces of

wood. "Thig is longer and that is shorter," he said, though the difference
is small. 'What would you say, if there were three of them?" I ask him.

6
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I had to help him with his terms: biggest, smallest,'ih between, but he'
was able to apply them to describe family relatlons involving himself
and, his two sisters., '

1 November 1975: I had collected about 30 chestnut leaf stalks, I
threw them on the table and asked him to estimate the number. He hesitated.
"Bo you think a hundred?" 'No," with jindignation. "Put them into order."
He takes them together in a bundle "They are not in ordex.” He presses
the bundle against his belly in order to find out the longest. I show him
it is easier to erect, the bundle on the table. The longest one was easily
found; then, in rapid suceession, he found the longest of ‘the remadnsder,
Soon, the whole collection was ordered according to size. ’

. I cut off stalks of length 10, 9 8, .;.,lfcm. He identifies three
lengths and names them as such. I cut another stalk of 5 e¢m. He predicts
5+3=10 and notes it down. _ : N

.. <y

-

: 2 November 1975: During experiments on Archimedes' principle we used

. the typewritten image of the scale of the spring balance (Figure 2) in
order to note down measured weights, and .to add and subtract them geowntriw .
cally. He was not yet able to add weights arithmetically.

-When he first looked at the typewriter scale, he procested the use
of the letter 1 as a figure instead of 1. However, he did not notice that
the typewritten scale was horizontal rather than vertical and that it was
not congruent to the scale of the balance.

25 May 1975: Bastiaan’s parents tried to explainm to him that an
hour has four quartere and that a florin has four quarters-~unsuccessfully,
I take an apple. 'You can halve it this way" (along a meridian), "and ’
once more that way' (along an orthegonal meridian); 'these are quarters." |
Then I asked: "How many quarters of an apple are in the apple?'' He' ;
answered ''eight." 'Why?" 'You can halve it once more that way" (along i
the equator), he answered. ‘

16 June 1976 (age 6;2 N:) After a long rew of sunny days, Bastiaan
noticed clouds. | "It will b¢ raining,” he said. I explained to him that
rain clouds are flow and dark, whereas these clouds are high and shiny;

no rain will fall out of these clouds. He asks: 'How high are these
clouds?" I say: "10,000 m." ile asks again: "How liigh are rain clouds?"
"1,000 m." He continves: "So, if we are here" (showing to the ground)
"and rain clouds here" (showing about 30 cm above the ground), "those cloud
are as high as this" (showing a meter above the ground).

Though this was a rough comparison, it was Bastiaan's filrst exglicit
showing of proportion--an important event in his development.

16 July 1976: Bastiaan uses a stick with a longitudinal groove
together with two bottle tops tec represent a machine pun with ¢wo bullet:
"What does a gun bullet look like?" he asked though he himself koew how

LI

iy
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apparent® did not know. I showed him examples like the section of a L
tree, the rim of a trash basket, a button, and he mentioned the sun and the,
moon. Finally, I showed him a circ1e~shaped hole in the 8lip of & beer canq
He protested. "This is a bit long." Indeed it was rather ellipticale-

a difference of less than 10%. The next day he used the word "circle"
correctly.

It was most revealing that Bastiaan did not protest about considering
the cross=section of a tree as a circle though it was much more jrregular
then the beer can. But the sharp hole in the can claimed a great precision.

4 September 1976: Bastiaan wanted to make "experiments with centi-
meters and decimeters.' He knew the -length of a meter and he knew about
the ratio 10:1. I asked him how tall he was. '"Better than a meter."

Bastiaan reasured his height (122 cm)}, his arm span, and his step,
the ground plan of the suite of two rooms by means of steps=-later measuring
- the whole ground level. After having measured the w..ith of one room, he
prepared to do the same with the other. Then, he drew a ground plan on
squared centimeter paper with his step taken as a unit {see Figures 3 and
4Y. 3

w- O
5
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Figure 3. Bastiaan's Drawings Figure 4. Bastiaan's Ground
About Hi:s Height, Step, and Span Plan
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The idea of a ground plan was maintained up to the drawiig of the doors,
which were "turned down."

19 September 1976: At a forked path, after a discussion on crosse
roads, Bastiaan said, '"There is not only right and left, there ‘is much
more, front and back." "How many?" I ask him. "At least twenty."

21 September 1976. During our walk, Bastiaan asked: 'Where is the
center nf the Netherlands?'" (Possibly he had heard about Utrecht as such.)
I explain to him that this was not easy to determine. Then, I asked,

"What 1is your center?" He pointed to his top. I argued that the center
should rather be in his belly. Then, I asked him about the center of

a tile or the pavement. First, he denied its existence. Then, he showed
its approximate center. I asked him to do it more precisely. He pointed
to the groove between the next row of tiles and cut it with an estimated
mid=line between the other side (see Figure 5).

||
InN

|

I
Figure 5. Tiles

I explained to him how to find the center using oblique lines. He
drew the diagonals and mentioned the word diagonal. He used this procedure
to find the centers of other objects, e.g., a bench.

. h)

26 September 1976: Bastiaan found the scraps of perforated sheet

iron from which he made his little dogs (see Figure g).

Figure 6. Bastiaan's Dogs

ey

g
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27 September 1976: In the sandpit in the Park, Bastiaan had built
8 large construction of roads, bridges, walls, tufinels. I asked him if he

could make a sketch of it when he got home, but he wanted to do it on
the spot.

I gave him a little piece of paper. (For a long time, it has been
his habit to make written reports.) He said, "I do not have a measuring
tape." 1 replied, "Then, you must estimate."” He measured with two
forefingers, parallel at a fixed distance-~proceeding with the left
forefinger in the hole made by the right one. Concerning tunnels, I told
him {invisible things are indicated by dotted lines.

An ascending dam led him into difficulties. I explained to him what
working-drawings are. »

Figure 7. Bastiaan's Map of the Park

A few days later he made a terrific game, a design of roads, with
holes at the cross-roads and red and green circular disks drawn on an

underlying sheet, so that by a slight turn red and green could be inter-
changed on the whole plan.

13 February 1977: Tastiaan swings the gate of a labor yard. The
door drew traces in the sand. 'What is it?" I ask him. "A line," he

says. 'What kind?" A curved line." '"What kind of curved line?" '"A
circle." "Yes," I said, "about a quarter of a circle. It is like the
hands of a clock." '"No," he said, "like wipers."

N

21 February 1977: Bastiaan played with a little car in the corridor
of my office. As usual, he made a written report--awfully spelled. "9
times pushing a car comes through the corridor of IOWO." He remarks that
with another car it would be different, for instance, if the car were
longer or the wheels stiffer.

18 March 1977: From the bar on the 21st floor of the Holiday Inn,
we were looking down on the Railroad Station. He saw ''sparks of a train."
I explained ‘to him that the sparks were really reflections of the sun in
the windows of the moving train. I made a drawing and asked him how
a sun ray would be reflected by a window. When he falsely produced the
ray, I made a new drawing. His answer was again wrong, but then he
corrected himself. 1 asked similar questions about a circular billard
table. His constructions were reasonable.

Iy
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24 March 1977: At dinner, with paper napkins (folded twice as usual),
I unfolded a napkin, asking Bastiaan whether by folding he could make a
square half the size. He folded it back and immediately saw he was wrong.
He tried it by folding away small strips parallel with the borders. "It
should be ‘done more precisely," I explained to him, "you must fold it
differently." He seized a corner in order to fold it towards the center.
Unfortunately, I intervened to prevent him from going beyond the center.
So he stopped at the center and immediately applied the procedure to the
other corners. In the same way, he then halved the new square,

14 April 1977: Bastiaan tried to describe the size of a certain box.
He did it with his hands, "that wide, that high." He did not understand
my question, "How long?" Cautiously, I tried to lead him to talk about
the length. "I cannot understand what yoy mean, Grandpa.’ Using a pillar
box, I pointed out that three dimensions are required. He then understood
my question, though he described the third dimension also with his pair
of hands lifted left and right, rather than in front. Later, when describing
a parked car it appeared that he wholly understood the matter.

16 April 1977: Bastiaan was playing on an exercise trail. The trail
was 80 m long. I followed him walking. He ran back to meet me and then
ran to the finish. "I have run twice 80 meters.' '"Why, you did not return
to the start.”" "I went to the middle and back, and 40 + 40 = 80." At
home he wanted to tell about how he ran 2 x 8 meters, but he makes it 600.
He did not see the connection with 8 + 8 = 16, which he knew very well.

Avgust 1977: 1In our holidsy resort, at the edge of.-a brook, Bastiaan
makes a model of the North Sea, the Dutch coast, the Frisian Islands, and
the German and Danish coast. He called it a miniature (possibly he learned
the word in connection with golf). His grandmother took a picture of his
work. He said: '"This becomes & double miniature."

1 September 1977: During dinner at Bastiaan's home, he asks how much
gees in a wine bottle. I told him a liter. He asked, '"What is a liter?"
I explained that a liter of water weighs 1 kg. He objected: '"But a liter
of something else weighs more." I continued, Y'According to a 750 at the
bottom, it should be 3/4 liter." Bastiaan asked, '"What is three quarters?"

I showed Bastiaan with a distance of 1 to 2 dm: '"This is half, this is
half of a half, a quarter, and that is three quarters.'" He again protested:
"If you start this way," his arms extended, '"it is much more.'" There are
two pileces of beefisteak left on a plate~-one somewhat bigger than the othe.'.
Miss Adda pointed to the bigger piece and asked: '"Is this half of 1t?"
Bastiaan said, '"Half of what?" And immediately continued: 'o, it is
bigger."

Later in the meal, Bastiaan said spontaneously, '"Parallel lines do not
meet." He probably had learnmed this fact at school. I asked him whether
lines that do not meet are always parallel. After some experimenting with

Ry
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two forks he exclaims: 'Two roads above each other, they nev r meet, they
'go far from each other." _ _ |

. ~ ; . X \
10 September 1977: Back from a long walk, we cross a slightly

ascending bridge~~Monica and myself on the side walk, Bastiaan'!on a small

wall along the sidewall ascending discontinuously by steps with horizontal

pleces about 5 meters wide. Bastiaan said: 'Now you are higher, but

ther I will be higher." He was referring to the difference between cont inuous

and discontinuous ascent (see Figure 8).

Y

fipr ¢ ©. Continuous Versus Discontinuous Ascent

26 October 1 77: On a walk to church, Bastiaan wanted to know the
height of a rather tall tower. I suggested that he should estimate it.
He guessed, '"100 meters." I criticized the estimation. '"You know the
cathedral tower is only a bit taller than 100 meters. I am 1,80 m tall
and that is nearly 2meters." Then I stood by the tower and asked, '"How
much then is the whole tower?' Bastiaan responded angrily: "I did ask
you to tell me how high the tower isg."

I went with him to the low stone wall surrounding the broad forecourt
of the church. 'Give me the stick," I said. (It was a piece of wood of
about 40 cm with a sharp tip which he had found just before.) I put the
stick vertically upon the wall, pressed my right cheek upon the wall such
that my right eye, the tip of the stick, and the spire of the tower ware
in one line. I asked hir to do as I did. He understood my intention as
he looked with the correct eye. He felt something should be measured though
he was not sure what it might be. He measured the distance between the
place of his eye and the stick with a span between thumb and little
finger* (which he knew was 1 dm). The distande was 3 dm. "So the tower
is Jmeters," he szid. "That is impossible," I answered. I suggested
for him to measure the distance between the wall and the tower. While
he preferred to estimate it, I insisted on the distance being measured by
steps. It was 30 steps. '"So 50 meters.'" I told him his steps were not
a meter, as I had done many times before. "Even my _teps are only 80 cm."
Then, I paced the distance and told him it was 36 m. He repeated the
observation on the wall and spontaneouly remarked that the stick was
somevhat longer than the distance from eye to stick. 'So, how tall will
the tower be?" He grasps that it must be higher than 35 m. I suggested,
"40 meters."

*
Compare this method with that of 27 October 1976.
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I continued, "And how high is the clock?" He again starts aiming,

" and marks the height of the clock on the stick. With some help this is

established as 3/4 of the stick. Then, without any hints, he estimated
the height of the clock to be 30 meters.

Meanwhile, according to his habif, he made a w¥itten report. He drew
the. sketch (see Figure 9) without help; and, I did-not correct it. It
shows that he understood the essentials.

Figure 9. Bastiaan's Drawing of the Church Tower

Next, Bastiaan remarked: "It is a better way to do it with a little
mirror. It is a pity I did not pick up the mirror pieces at the locks."
Indeed, on our way back we found pieces of a smashed car mirror. Bastiaan
explained in exact terms how he could measure the height of a tower using
a mirror. His alternative solution is shown in th next figure.
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Figure 10, Bastiaan's Alternative Solution to the Tower Problem

"It is easier,'" he said, "You need not press your eye upon the wall, but it
also is more difficult because it is more difficult to find." I tried to
explain to him that with sunshine the height can also be found using
shadows. "'No, you cannot get the whole shadow on the court," he objected.

At the locks he picked up a mirror piece and tried his technique on
the height of streetlamps--unsuccessfully.

3 Dece?bef 1977: Looking at a brush, Bastiaan said: "I .re they
forgot 1 c¢m” to be trimmed." (It was meant as a joke.) I asked him what
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a emd is. He replied, "A cube with all sides 1 em." "It is called an
edge rather than a side. How many edges does a cube have?" Bastiaan
answered (hesitating): "8." I said: "4 below, 4 above, and..," (he
seemed to figure out 6 x 4.) I continued asking: "How many corners
 does a cube have?" "8." "How many faces?" "6." "How many edges? 4
below, 4 above, and ... standing ones?" Bastiaan answerec, "12." "A
little while ago, you tried to do 6 x 4, didn't you? What is wrong
with that?" Bastiaan said, "You did not say standing omes."

~ Summary and Conclusions

Let us gtop to think about the meaning of the preceding bulk of
observations. It is rough material that I indifferently collected and
have used extemsively in the meantime to understand geometrical learning.

My wcthod widely differs from Pilaget's I did not start from any
preconceivzd theory, and I rejected the idea that geometrical development
proceeds according to some logical system of geometry however beautiful
it might be. So I could not confirm that geometry develops according to
the classification of the Erlanger Programme. I should add that even as
a mere hypothesis this is highly improbable in itself. As a matter of
fact, Piaget's experiments (which I do not consider as meaningful), if
correctly interpreted, contain as many proofs to the contrary. There is
as little evidence that geometry develops according to the sequence
"topology, projective, affine, euclidean geometry" as there ie for plane
and space to be mentallv constituted as cartesian products of two or three
straight lines, as Piag.t puts it.

I would not maintain that I can do without some theory of my own,
albeit as a frame to order and to understand my cbservations. I believe
that little children have at their disposal certazin mental objects-=in
particular, geometric ones-«and mental operations on these objects; and
my efforts are aimed at discovering them. It would be a hard thing to
decide which are innate, and ¢o what degree, and vhich are acquired at a
very early age. Straight lines, parallelism, circles, squares, right angles,
planes, symmetries, congruences and similaridies are suggested so early
and by so many concrete objscte and phenomena of our cultural environment
that there is little chance to trace back their origin to an even earlier
source as in innate ideas, On the other hand, we cannoi but assume that
on our cersbral cortex a computer programme is imprinted that allows us
to perform congruence and similarity transformations and use polar coordinates
to compare things as to thelr "true size" and to put things "uoright."

Geometry is a part of mathematics where one can go a long wey with
nothing but mental objects. Many people never form concepts like straight
line, circle, square, and cther ideas mentioned in this paper., Witi.out
formal education, those who go as far as to form concepts remain a gmall
minority,

Formal instruction of geometry usually aims at teaching concepts. I think
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this is wrong. Teaching geometry should start with developing mantal
oblects, and this development should begin at the esvliest age whers it
is feasible~wthat i3, during the whole pericd of kiudergarten and
elementary school. Starting geometry as late 48 is now the hobit is =
serious mistake. )
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Lat us once more veview some of the stories from Banciaan's diary.
With young children one example may sufflce to explain what a circle is,
or & square, or a horse,or a tree. rrobakly somewhat more exemples, though
not very many, are needed to tell them abour "two" or "three." Color
seems to need even more examples. But what about graaping the precision
required (or the vagueness aliowed) If something is to be identified as a K
circle? How did Bastiaan gresp that in the world of trees the cross« » i
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,& sections deserve the predicate of circle while sharp holes in wetal g
- sheets have to fulfill much stronger conditions to bte admitted as circlesg? 3
§{ Picture books and playthings which imitate objects in the world 3
‘. of adults presuppcose and develop ideas about ratio and propoxtion long T

before they sre verbalized and conceptualized. But what about construsting

ratios in order to grasp big sizes? I often constructed such ratlos to

explain about sizes in the universe. Bastilaan used these ratlos to

estimate the gize of clouds. ' ’/'

Straight lines are very early mental objects. OStraightness is /
suggested by objects and phenomena in the normal environment: by the upright,
posture, by the extended limbs-«hands, legs, fingers-«by the stalks of
plants and the trunks of trees, and by the straight path (which is alzo
the shortest, the most direct path).

;

One of the first tools made by man is the arrow, paragon of straight«
ness, and civilization produces ever and ever more and more objects and oy
processes and elicits actions suggisting or representing straighiness: &
sticks, pins, rims, edges, paths, folds, cuts, tended strings,

Straight lines originate in a multifarous way:
LN
by copying (drawing with the ruler),
as intersection of planes,
as a cut line,

as a fold line,

as a straight~on path,

as a shortest path,

as a stretched string,

as a vision line (light ray), :
ag a reflection axis (in the plane),

as a rotation axis (in space).

These ways of generating straight lines are not independent of each other.
The sharp edge of a ruler is someth.ag like the intersection of two planes.
The cut line originates as it were by copying the sharp cdges of the pairs

Q 7 (’
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of scissors. The fold line comes into being by giving the paper the 8hape
of two (fragments of) planes, and the straightness of the axis of
reflection may somehow be explained similarly.

The most subtle in this catalogue seems to be the vision line. What
was most astonishing about Bastiaan's measuring the church towere=and his
most original idea~~war connecting his eye, the tip of the stick, and the.
spire of the tower by a straight line. I would not have expected it so

early. It is strange that explaining shadows geometrically is a later
stage.,

The catalogue of sources of the straight line is intended to show
the phenomeno-logical complexity of such a mental object., Is it develope
mentally as complex? There are innumerable questions I could ask about
this one mental object and among them there are very few I would be

able to discuss. What is general about learning processes is problems
rather than solutions.

. N OV ST N I
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Reference Note

1. Pleces from the diary were published in Dutch: Wandelingen met Bastiasn,
Bastiaan's Lab, Bastiaan meet (de wereld); Pedomorfose 7 (1975), no. 25,
P. 51=64; Pedomoxfose 8 (1976), no. 30, p. 35~54; Pedomorfose 10 (1978),
no. 37, p. 62-68.
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